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Improving the Quality of Web-based Data
Imputation with Crowd Intervention

Binbin Gu, Zhixu Li, An Liu, Jiajie Xu, Lei Zhao and Xiaofang Zhou Fellow, IEEE

Abstract—Data incompleteness is a common data quality problem in databases. Recent work proposes to retrieve missing
string values from the World Wide Web for higher imputation recall, but on the other hand, takes the risk of introducing web
noises into the imputation results. So far there lacks an effective way to control the quality of web-based data imputation, given
the complexity of the quality model and lacking of enough ground truth data. In this paper, an EM-based quality model is firstly
built for web-based data imputation which investigates three key factors jointly, i.e., precision of web sources, correlation among
web sources, and precision and recall of the employed extractors. However, the accuracy of the EM-based quality model could
be harmed when the EM (Expectation Maximization) assumption that “the majority agree on the truth” does not hold in some
cases. To solve this problem, we introduce crowd intervention to help improve the quality model. While a straightforward but
expensive way is to let the crowd to identify all these undesirable cases and provide the right imputation values for these blanks,
a most crowd-economic way is to select a small set of blanks for crowd-based imputation, whose results could help to adjust
the EM-based quality model towards a better one. To achieve this, an adaptive blank selection strategy is proposed to select a
sequence of blanks for crowd-based imputation. Also, we work on finding a proper time to stop further crowd intervention for the
balance of crowd efficiency and quality improvement. Our experiments performed on three real world and one simulated data
collections prove that the proposed quality model can effectively help improve the quality of the web-based imputation results by
more than 15%, while our crowd cost saving strategy saves more than 75% crowd cost.

Index Terms—Data Imputation, Web, Crowd
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1 INTRODUCTION

Missing data is a common issue in almost every large data
collection, and the process of filling in the missing values
is well known as data imputation [25], [39]. Traditional
imputation methods to non-quantitive string data mainly
rely on some local data constraints (such as FD/CFDs) [1],
[34] or prediction models [39], [46] to infer substitutes or
estimations for the missing string values. However, these
methods always fail to get the right missing values due to
the limitation of relevant information and knowledge for
filling in these missing values. To reach higher imputation
precision and recall, some recent work turn to outsource
the task to crowd workers [14], [45] when the traditional
methods are not capable of filling the missing values.
However, crowd-based imputation could be expensive given
that it pays money for every human input.

A rising class of approaches propose to get missing string
values from external sources such as online encyclope-
dia [42] and the world wide web [25], [26], [19]. While

● B. Gu, Z. Li, A. Liu, J. Xu, L. Zhao are with the Institute of Artificial
Intelligence, School of Computer Science and Technology, Soochow
University, China. Email: gu.binbin@hotmail.com, {zhixuli, anliu, xujj,
zhaol}@suda.edu.cn. Z. Li is the corresponding author of the paper.

● B. Gu is also with the Department of Computer Science and Engineer-
ing, University of California, Santa Cruz, US.

● Z. Li is also with the IFLYTEK Research, Suzhou, China, and the State
Key Laboratory of Cognitive Intelligence, IFLYTEK, Hefei, China.

● X. Zhou is with the Institute of Electronic and Information Engineering
of UESTC in Guangdong, Dongguan, Guangdong, 523808, China.
He is also with the School of Information Technology and Electrical
Engineering, The University of Queensland, Brisbane QLD 4072,
Australia. Email: zxf@itee.uq.edu.au

!"#$% &#"'( )*'+% ,'-($ .-"-$

!"#$%&"'() !*"'()+,(-./*0 123 456. 17

869%856:; 8956:;<+=">/./*0 ?">/ &6#. @?

7,"%!6;/) 1A B7

! ! ! !

%%%

%%%

%%%

%%%

)/0"1"23(-4567!

#$%!%&'()$8

9#"%

)/0"*)+,-./)(.%'0%1,(23,2)!

4,536.7%'0%!

77777777777!879#"7:;6<

77777777777!7=>!&.8

)/0"*)+,-./)(.%'0%89:6;%<),6.9!

4,536.7%'0%!787!7;679#"7%%%

777777777777777777!7=>!&.7!

)/0"1"23(-4!

9;978

#$%!%&'()$ %%%

)0)?"*)+,-./)(.%'0%5'/+3.)-%!

4,536.7%!%%8@ABC%79D"7="*$6

;6%79#"7=B*$6

)0)?"4,536.7%'0%!%%87

=/,%! 8;6%=B*$67%%%

9*70#E3-"-'B*7F3$A4G

"#$%&'()*+&C%1).CDE"#0>-=%

FG%&/H"5-,/;-I,

7 )/0777777 )0)?7

!"#$%&'()"*

Fig. 1. A Bad Example of WebPut

some work proposes to get the required values from web
tables and web lists [19], a more recent work proposes
a web-based data imputation framework called WebPut,
which finds the missing values with indicative context in-
formation from free-text web pages on the web. It leverages
traditional information extraction methods together with
the capabilities of web search engines towards the goal of
imputing missing values in relational tables [25], [26]. The
primary two steps of WebPut are issuing queries to the web
and extracting the missing values from the returned web
pages of various web sources as described in Figure 1.

Although reaching a much higher imputation recall than
the previous approaches, due to various reasons such as the
noisy data on retrieved web pages, or incorrect extraction
of the target value from the web pages, WebPut is very
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likely to introduce incorrect imputation results into the
objective database. Consider an imputation case described
in Figure 1, where a wrong answer (v1) to a blank is
supported by 4 web sources while the correct one (v2) is
only supported by 2. If we simply count on the number of
websites supporting an answer, the wrong answer v1 will
be filled into the blank as a right one. According to our
observations, the possible reasons behind this phenomenon
including: low accuracy of the answers provided by sources,
the plagiarism of the content between sources, and the
failure of the extraction ways in identifying the target values
from the retrieved web pages.

To control the quality of the web-based data imputation
results for WebPut, building a suitable quality model is
essential. According to our analysis above, this quality
model should consider at least the following three groups of
factors: (1) Precision of Every Web Source, which reflects
the average correct likelihood of the answers provided by
each web source; (2) Correlation among Web Sources is
non-trivial in deciding the final answer to a blank provided
by WebPut, given that sources may not be independent
since one source may copy data from the other sources; (3)
Precision and Recall of Every Extractor also greatly affects
the quality of each extracted answer from the retrieved
web pages, given that extractors may also make mistakes
in extracting the correct answers from the sources. Note
that the three groups of factors do not work independently,
but mutually determine our judgement to the correctness of
an imputation value, which brings great challenges to the
construction of the quality model.

This paper mainly works on building a proper quality
model for WebPut. Particularly, this quality model would
consider the three factors above jointly in deciding the
correctness of every retrieved imputation value from the
Web. To this end, three groups of variables corresponding to
the three factors respectively need to be set up for building
the model. Nonetheless, given no priori knowledge about
the correct imputation answers to all the blanks in hand, it
is difficult to tackle the correlation among Web sources.

As an alternative, we initially propose to build the quality
model by employing an unsupervised EM-based approach
to set up proper values for the three groups of variables,
based on the simple EM (Expectation Maximization) as-
sumption [28] that “the majority agree on the truth”. How-
ever, the accuracy of the EM-based quality model could be
harmed when the EM assumption that “the majority agree
on the truth” does not hold in some cases. To solve this
problem, we introduce crowd intervention to help improve
the quality model later.

Given the complexity of the three factors’ relations in
jointly deciding the quality of the extracted values, estimat-
ing proper values for the three groups of variables at once is
intractable. As an alternative, we first estimate the precision
and recall of each extraction way with EM by fixing the
precision of sources and the correlation among web sources,
and then estimate the precision of each source by fixing
the correlation among web sources. Finally, we discuss on
setting up the correlation between web sources. We repeat

this value estimation process for variables iteratively until
the values of these variables become stable.

Most of the time, the EM-based quality model could
help get the right answers for blanks in the objective
database, but it still makes mistakes when its assumption
does not hold in some specific cases. For instance, the
ubiquitous copy operations among some sources will make
the incorrect answer provided by these sources have a pretty
high confidence to be taken as a correct answer by WebPut.
Also, the EM-based quality model may be paralyzed for
some blanks where all the candidate values have small
correctness probabilities. As no ground truth is available,
our inference to the three groups of variables in the quality
model greatly depend on the EM assumption. As a result,
when the assumption does not fit the actual case, the EM-
based quality model may not be able to reach a good
performance.

To tackle the problems, we introduce crowd interven-
tions to help improve the EM-based quality model. In
other words, we translate the unsupervised model into the
semi-supervised model with some crowd interventions. A
baseline approach could ask the crowd to help solve every
problematic case by providing the right imputation results,
but apparently this baseline way would be very costly
when the data set is large. As an alternative, we novelly
propose to do active crowd intervention to the EM-based
quality model. The purpose of active crowd intervention
is to adjust the EM-based model with as less blanks for
crowd-based imputation as possible. To achieve this, a set
of “informative” and “diverse” blanks are expected to be
selected into a sampling set for crowd intervention, where
“informative” means having a small correctness probability
of the imputation result in WebPut while “diverse” blanks
can help to improve the precision and correlations of all
the sources of the EM-based quality model. Based on the
crowd intervention results on the sampling set, we then
work on adjusting the precision of web sources as well
as the correlation among sources. In addition, to reach a
balance between accuracy and crowd efficiency, we also
need to figure out when to stop further crowd intervention.

To summarize, our contributions are as follows:
● We propose to build a quality model to control the

quality of web-based data imputation results, which
takes several important factors into account including
the precision of web sources, the correlation among
web sources, and the precision and recall of the
extractors.

● Given no priori knowledge on the right imputation
answers to those blanks, we propose to employ an
iterative EM approach to estimate proper values for the
three groups of factor variables in the quality model.

● To address the problems of the EM-based quality
model, we introduce crowd intervention to help im-
prove the model. Besides, we find ways to minimize
the crowd cost as much as possible while guaranteeing
the quality of the model. And our method is based on
a general unsupervised method and can be easily ex-
tended to other similar models (Probabilistic Models).
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Fig. 2. The Key Factors in the Quality Model for
WebPut

Experiments ∶ Our experimental study conducted on sev-
eral real data collections proves that the EM-based quality
model improves the imputation quality by 10%, while the
crowd intervention further enhances the quality by 5%.
Besides, our proposed method could save 75+% crowd cost
without hurting the imputation quality.
RoadMap ∶ The rest of the paper is organized as follows:
We first state our problem in Sec. 2. We introduce our EM-
based probabilistic quality model for WebPut in Sec. 3, and
then present how we modify the EM-based probabilistic
model with crowd intervention in Sec. 4. After reporting
the experiments in Sec. 5, the related work is covered in
Sec. 6. We conclude in Sec. 7.

2 PROBLEM STATEMENT

Given a database with missing values, the Web-based
Data Imputation (WebPut for short) approach issues im-
putation queries to web search engines for every blank
in the database, with an expectation to obtain the right
missing value from relevant web sources for the blank.
More detailed description to WebPut could be found in
the literature [26]. However, given several factors that may
interfere the accuracy of the web-based data imputation
results, it is necessary to establish a proper quality model
for controlling the quality of WebPut results.
Key Quality Factors. To establish a proper quality model,
three groups of key quality factors need to be considered
jointly in deciding the correctness of imputation results as
depicted in Fig. 2:

● Precision of Each Web Source: The precision of a web
source is the average correct likelihood of the answers
provided by the web source. It is the most direct factor
that need to be considered in the quality model.

● Correlation among Web Sources: The correlation
among web sources is non-negligible. If multiple web
sources with correlation provide the same wrong an-
swer to a blank, the wrong answer would have a much
larger opportunity to be taken as the final answer
to the blank by WebPut if we do not consider their
correlation.

● Precision and Recall of Each Extractor: The employed
extractors may also bring noises into the imputation
results when they failed to identify the right answer

from the retrieved web pages by WebPut. Please also
note that an extractor is formulated according to a cer-
tain pattern for extracting (subject, predicate, object)
triples from a web source. For instance, one extractor
can extract the triple ($A, country,$B) according to
the pattern “A, the president of B”. However, this is
not correct when A is the president of a university,
not a country. In this case the pattern “the nationality
of A, B” may be more effective. So we need more
than one extractors to guarantee the high accuracy of
WebPut.

Basic Assumptions. Several basic assumptions are given
below: (1) Although different web-based data imputation
query may get different numbers of search results from the
Web, only the top-k search results of a query are employed
for imputation, where k = 100 is a proper value as reported
in the literature [26]; (2) since different kinds of missing
values usually require different extractors to extract the
values from the web pages and the chosen process is usually
made by human experts, thus the dependencies between
different extractors can be negligible;
Notations. Some notations used in this paper are in Table 1.

NOTATION DESCRIPTION
s ∈ S A web source s in the web source set S
e ∈ E An extraction way e in all the employed extraction ways E
b ∈ B A blank b in the set of all blanks B in the objective database
v ∈ V b A value v in a set of candidate imputation values V b to blank b

vbc The correct imputation value for blank b

vb(s) An imputation value provided by a source s to b

V B(s) An imputation value set provided by s for B
x→ y A source (or/and) extraction way x returns a value y

TABLE 1
Notations Used in the Rest of The Paper

Given all the above, the quality control task for web-
based data imputation can be informally stated as follows:
Problem Statement. Given an objective table T with a set
of absent values (or blanks) B, assume WebPut retrieves
missing values for blanks in B from a set of web sources
S = {s1, s2, ..., sm}, by using a set of employed extraction
ways in E = {e1, e2, ..., en} to detect all kinds of objective
missing values from the web pages in S, the quality control
task for WebPut is to build a proper quality model below:

ModelQ(S,E) = fQ(Corr(S),{P (s1), P (s2), ...P (sm)},
{P (e1), P (e2), ...P (en)},{R(e1),R(e2), ...R(en)})

where fQ(⋅) denotes a function which could predict the
quality of each candidate value extracted from the web
sources and Corr(S) is the correlation among sources in
S, P (si) (1 ≤ i ≤m) denotes the precision of a web source
si, and P (ej) and R(ej) (1 ≤ j ≤ n) are the precision and
recall of an employed extractor ej respectively. With this
quality model, we expect to help identify the correct impu-
tation values from the incorrect ones effectively, such that
we can improve the quality of the web-based imputation
results.
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3 EM-BASED QUALITY MODELING

In this section, we introduce an EM-based probabilistic
quality model for WebPut, which considers the three groups
of factors presented in last section jointly. Given no priori
knowledge on the right imputation values to any of these
blanks, this EM-based quality model tries to estimate proper
values for the three groups of variables (corresponding to
the factors) based on the basic EM assumption that “the
majority agree on the truth”.

However, directly analyzing the three groups of variables
together with EM approach is intractable. As an alternative,
we first present how we estimate the correct likelihood
of each value by assuming that all web sources are in-
dependent in Sec. 3.1, and then introduce how we do it
with source correlation in Sec. 3.2. We finally analyze the
drawback of the model in Sec. 3.3.

3.1 Inferring with Independent Sources

By temporarily ignoring the dependencies between sources,
we can consider a source s and an extraction way e in
combination, i.e., (s, e), in providing the correct imputation
value for a specific blank b as follows:

Pr((s, e) → v∣b) ={ P (s, e) if vbc = v
λ(s, e, b, v) ⋅ (1 − P (s, e)) otherwise

(1)
where P (s, e) is the precision of the (s, e) combination, vbc
is the correct imputation value for the blank b, λ(s, e, b, v)
is the probability that (s, e) provides a certain wrong value
v for b among all the wrong values (we adopt the uniform
distribution to these wrong values in our experiments).

However, we do not know a priori knowledge about
which value is the right answer which makes Eq. 1 incalcu-
lable. In this case, we employ an iterative EM [28] approach
to estimate the precision of each source-extraction combi-
nation, i.e., P (s, e) for each (s, e), such that we can further
calculate the correct probability of each imputation value v
returned by any of these source-extraction combinations.

Let V⃗ b = [v1,1, ..., vi,j , ..., vm,n] denote the vector of the
observed values returned for imputing the blank b from
all the combinations of source-extractor pairs, where vi,j
is the value returned by the source-extractor pair (si, ej)
(1 ≤ i ≤ m, 1 ≤ j ≤ n), then we have the joint distribution
of the observed imputation values for b as follows:

Pr(V⃗ b∣vbc = v, b) = ∏
(si,ej)∈S×E

Pr((si, ej) → vi,j ∣vbc = v, b)

(2)
Basically, the object of the EM approach is to find out the

v that can maximize the value of Pr(V⃗ b∣vbc = v, b). Given
that we have no prior knowledge about the confidence of
each source, we give them a same score (say 0.7 in our
experiments) initially. Specifically, we do E-step and M-
step as follows:

E-step: At an E-step, given the observation value vector
V⃗ b for blank b, we can calculate the probability of vbc = v

by the Bayesian rule as follows:

Pr(vbc = v∣V⃗ b, b) =
Pr(vbc = v, b) ⋅ Pr(V⃗ b∣vbc = v, b)

∑v′∈{V⃗ b}
Pr(vbc = v′, b) ⋅ Pr(V⃗ b∣vbc = v′, b)

(3)

where {V⃗ b} is the set of all distinct values in V⃗ b. Note
that at the first E-step, we use a uniform prior for all the
Pr(vbc, b) since we do not know any prior knowledge of
the true values in the beginning.

M-step: At a M-step, we update vbc with the value v that
can maximize Pr(vbc = v∣V⃗ b, b) among all the observed
values, i.e.,

v̂bc = argmaxPr(vbc = v∣V⃗ b, b), (4)

and then we can update all P (s, e) as follows:

P (s, e) =
∑((s,e)→vbc ∣b∈B)

Pr(vbc = v∣V⃗ b, b)
∑((s,e)→vbc ∣b∈B)

1
(5)

which means we estimate the precision of (s, e) with the
probability of (s, e) in providing the correct answers for
blanks in B.

We perform the E-step and M-step alternately until all
P (s, e) become stable.

3.2 Inferring with Source Correlation
Given the correlation among sources, we need to consider
every source and its corresponding extraction ways inde-
pendently (instead of the two in combination). With the
correlation among sources, we rewrite Eq. 1 as follows:

Pr((s, e) → v∣b) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

P (s) ⋅R(e) True(b) = v
λ(s, e, b, v)P (s)(1−
P (e)) + λ(s, e, b, v)
R(e)(1 − P (s)) otherwise

(6)
where P (s) is the precision of the the source s, P (e) is
the precision of the extractor e, and R(e) is the recall of
the extractor e.

As illustrated in Fig. 2, three different kinds of variables
need to be analyzed in this model. However, directly
analyzing the three variables together is intractable because
we do not know whether a web source actually provides a
value v for a blank b and which is the true value vbc for
a blank b. In other words, there are two groups of latent
variables. Therefore, we first estimate the precision P (e)
and recall R(e) of each extraction way e with the EM
approach by fixing P (s), and then estimate the precision
P (s) of each source s.
1) Estimating P (e) and R(e): Denote V⃗ b(s) = [v1, ..., vj ,
..., vn] the vector of observed imputation values from s
returned by the n extractors for the blank b, where vj is the
value returned by ej (1 ≤ j ≤ n). Based on the assumption
that all the extractors are independent, we may have the
joint distribution similar to Eq. 2 as follows:

Pr(V⃗ b(s)∣vb(s) = v, b) = ∏
ej∈E

Pr((s, ej) → vj ∣vb(s) = v, b)

(7)
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where vb(s) is the value that truly provided by the source
s for b (although it may not the correct imputation value
for b).

Basically, the object of the EM approach here is to find
out the v that can maximize the value of Pr(V⃗ b(s)∣vb(s) =
v, b). Specifically, we do E-step and M-step as follows:

E-step: At an E-step, given the observed value vector
V⃗ b(s) for blank b, we can calculate the probability of
vbc(s) = v by the Bayesian rule as follows:

Pr(vb(s) = v∣V⃗ b(s), b) =
Pr(vb(s) = v, b) ⋅ Pr(V⃗ b(s)∣vb(s) = v, b)

∑v′∈{V⃗ s} Pr(vb(s) = v′, b) ⋅ Pr(V⃗ b(s)∣vb(s) = v′, b)
(8)

where {V⃗ b(s)} is the set of all distinct values in V⃗ b(s).
Note that at the first E-step, we use a uniform prior for
all the Pr(vb(s), b) since we do not know any prior
knowledge of the true values in the beginning.

M-step: At a M-step, we update vbc(s) with the value v
that can maximize Pr(vbc(s) = v∣ ⃗V b(s), b) among all the
observed values, i.e.,

ˆvb(s) = argmaxPr(vb(s) = v∣V⃗ b(s), b),

and then we can update all P (e) and R(e) as follows:

P (e) =
∑((e,s)→vbc(s)∣s∈S,e∈E,b∈B) Pr(vb(s) = v∣V⃗ b(s), b)

∑((e,s)→vbc(s)∣s∈S,e∈E,b∈B) 1
(9)

R(e) =
∑((e,s)→vbc(s)∣s∈S,e∈E,b∈B) Pr(vb(s) = v∣V⃗ b(s), b)

∑v′∈{V⃗ b(s)}
Pr(vb(s) = v′∣V⃗ b(s), b)

(10)
where the meaning of Eq. 9 is similar to Eq. 5, and Eq. 10
calculates the recall of e according to the percentage of
correct values among all the values provided by the sources
in S.

We perform the E-step and M-step alternately until all
P (e) and R(e) become stable.
2) Estimating P (s): After deciding the precision and recall
(i.e., P (e) and R(e)) for all extractors, we now estimate
the precision (i.e., P (s)) of all web sources with the
correlation among these sources. In statistics, the inclusive-
exclusive principle [3] is usually applied to calculate the
joint probability, but it often needs much prior knowledge
(correlations among various incidents). In our case, we
actually seek to find the joint true and false probability
of values. Inspired by this, we use the joint distribution of
values to represent correlation factor of sources which could
fit into our EM-model. Specifically, let Corr(S) denote the
correlation factor among the sources in S that all provide a
correct value. Basically, Corr(S) can be estimated by the
joint distribution over the source set S and the precision of
each single source in S. Formally,

Corr(S) =
Pjoint(S)
∏s∈S P (s)

(11)

where Pjoint(S) is the joint distribution of values provided
by S. Note that the correlation factor of the sources in S

level 1

level 2

level n

.

.

.

Fig. 3. An Example Lattice of Source Set

that all provide an incorrect value is sort of different with
the above equation. Instead, the value should be calculated
by replacing the denominator as ∏s∈S Pinco(s) in Eq. 11
in this circumstance, where Pinco(s) is the probability that
s provides a specific incorrect value. The challenge here
lies on how we compute the joint distribution (accuracy)
Pjoint(S). As we do not have the ground truth about the
imputation values for all the blanks, we can not calculate
Pjoint(S) exactly. On the other hand, even having the
ground truth, it would be very costly and impractical to
estimate the joint distribution for each of the 2∣S∣−1 different
possible combinations of sources in S.

As an advisable way, we propose an approximate and
efficient way to estimate Pjoint(S). Inspired by the exis-
tence of social communities in social network [12], [13],
we suppose that there are also Source Communities on
the web, where there are relatively strong dependencies
within a community, but much less dependencies across
communities. Based on this assumption, we would like
to get source communities by identifying and merging
similar sources that always provide similar values into a
community. Approximately but efficiently, we would take
these communities as independent ones, such that we could
essentially synthesize the dependency between the sources
within a source community by giving an expert confidence
of them rather than addressing those sources independently.
Although this method can not address the correlation of
sources thoroughly, we will use the crowd to help us tackle
the correlation of sources more effectively and exactly in
the next section based on the above strategy.

The key challenge here lies on how we measure the
similarity among sources. In the following, we present how
we measure the similarity among sources and then intro-
duce how to further reduce the computational complexity
of merging sources into communities.
1) Similarity Measure for Sources: Basically, we decide
whether two (sets of) sources should be merged or not
based on whether the values provided by the two (sets
of) sources for the same set of blanks are similar to some
extent. Naturally, we can calculate the similarity between
two (sets of) sources S1 and S2 as follows:

sim(S1, S2) =
Overlap{S1, S2}

∣B∣
(12)
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where Overlap{S1, S2} is the number of overlapping val-
ues provided by S1 and S2, and B is the blank set which
needs to be imputed.

For more than two sources, given a set of blanks B in the
local database, we define the proportion of the overlapped
values in S w.r.t. B as:

closeness(S) = ∑b∈BD(S, b)
∣B∣

(13)

where D(S, b) is to distinguish if the values provided
by every source in S are the same. Formally, it can be
calculated as follows:

D(S, b) ={ 1 if ∣V (S, b)∣ = 1
0 otherwise (14)

where V (S, b) is the set of distinct values provided by all
sources in S, and ∣ ⋅ ∣ returns the number of elements in a
set.
T heorem 1: For two source sets S′ and S′′, if

closeness(S′) < θ and S′ ⊂ S′′, then closeness(S′′) < θ,
where θ ∈ (0,1].

Example 1: Assume that B = {b1, b2, b3, b4, b5} and
sources s1, s2, s3, s4, s5 provide values for B =
{b1, b2, b3, b4, b5} as {a, b, c, d, e}, {a, b, c, d, f}, {a, b, c,
d, f}, {a, b, c, d, f}, {a, g, c, d, e} respectively. Then we
have closeness(s1, s3) = 0.8, closeness(s1, s5) = 0.8, and
closeness(s1, s3, s5) = 0.6, closeness(s1, s2, s3, s4, s5) =
0.6, closeness(s2, s3, s4) = 1.
2) Generating Source Communities: We now merge
sources into a number of source communities. Besides
the similarity measurement for sources, we also need a
similarity threshold θ to judge the closeness of all sources
in a source set. In other words, a set of sources will be taken
as a possible source community only when its closeness is
no less than θ.

To merge similar sources, a lattice structure can be used
to enumerate the list of all possible source set which is il-
lustrated in Fig. 3. Generally, the ∣S∣ sources can potentially
generate up to 2∣S∣−1 source sets excluding the empty one.
Since ∣S∣ can be very large, the search space of source
sets that need to be explored is exponentially large. To
reduce the number of candidate source sets, our strategy is
guided by the following intuition. According to Theorem. 1,
for two source sets S′ and S′′, if closeness(S′) < θ
and S′ ⊂ S′′, then S′′ should not be a qualified source
community, where θ is the minimum closeness threshold
we set for source communities. In other word, a qualified
source community should guarantee that its members are
similar enough to each other. If the source set S is not a
candidate source community (whose similarity is less θ),
then all the supersets of S can not be candidate source
communities. As can be seen from Fig. 3, initially, we make
comparisons between any two sources in S and calculate
their similarity (the results are illustrated at level two).
For those sources whose similarity is less than θ, all its
supersets will be pruned from this search space. Next, we
iteratively search the candidate source set based on the

qualified source set (whose similarity is no less than θ)
on current level.

However, comparing the source set between any two
sources is quite expensive because a large number of
source sets must be examined. We notice that there are
many duplicate candidates generated with this method.
Inspired by the apriori-gen function [36] used in frequent
item set generation, we could use a similar method to
further reduce the number of source set comparison. Let
Sa = {sa1 , sa2 , ..., sak} and Sb = {sb1, sb2, ..., sbk} denote two
qualified source sets at level k in Fig.3, if and only if Sa

and Sb satisfy the following conditions:

sai = sbi (for i = 1,2, ..., k − 1) and sak ≠ sbk (15)

we then examine them by calculating their similarity.
We repeat the merging process from level 2 to level n

in turn. After the search space has been scanned once, we
recheck the remaining source sets from level n to level 2
in turn. If there are more than two qualified source sets
which have the same subset at the same level, we just
remain that one which has the largest similarity for best
source merging performance. If a source set is identified as
a qualified source community, all its subsets will be pruned
from the search space. Finally, all the remaining source sets
are the source merging results, i.e., the qualified source
communities.

Two issues should be specified after source merging:
(1) Note that there might be conflicts between sources in
the same community in providing answers to the same
blank. In this case, we take the value owning the largest
number of support sources as the answer provided by
the community to the blank. (2) After merging similar
sources into communities, we need to reassign different
confidence to these communities instead of using the same
initial confidence (precision) for each source as we did in
Sec. 3.1. Specifically, we tend to give a higher confidence to
a community if it contains more sources. For approximating
the real distribution of the precision of sources, we employ
the Gaussian distribution to help us set the initial confidence
of these communities. Finally, similar to the computation
process in Sec. 3.1, we compute the correct probability of
each value by considering s as the (s, e) pattern and then
output the results.

Example 2: Continue with Example 1, given P (si) =
0.7 for every i ∈ [1,5] initially, and the precision and recall
of extractors are all 1 , we assume that s3 and s4 copy all the
data from s2, then we have Pjoint(s1, s2, s3) = 0.7∗1∗1 =
0.7 and Corr(s1, s2, s3) = (0.7 ∗ 1 ∗ 1)/(0.7 ∗ 0.7 ∗ 0.7) =
2.04. Assume the five sources are independent, then we
have P (s2) = P (s3) = P (s4) = 0.99, P (s1) = 0.8 and
P (s5) = 0.6 according to Eqs. (1-5). In this scenario, the
correctness probability of the value e nearly 0. However, it
is usually not the truth in real scenarios. If we consider s2,
s3 and s4 as one big source, denoted by s234, and assign
0.9 as its initial precision, then we have the correctness
probability of the value e approximately equals to 0.5.

For better explain the modularity and logics of the EM-
based quality model for WebPut, we also have a meta
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algorithm to specify and how we call each module/formula
in the process of the algorithm. Due to the space limitation,
the Algorithm is put in the appendix.

3.3 Problems Analysis
In most cases the EM-based quality model could help get
the right answer for the blanks in the objective database, but
it still makes mistakes when its assumption does not hold in
some specific cases. For instance, the ubiquitous copy oper-
ations among some sources will make an incorrect answer
provided by these sources has pretty high confidence to be
taken as the correct answer by WebPut. Also, the EM-based
quality model may be paralyzed for some blanks where all
the candidate values have small correctness probabilities.

4 CROWD-AIDED QUALITY CONTROL

To overcome the disadvantages of the EM-based quality
model, we propose to use crowdsourcing as a complement.
Different from the existing crowdsourcing-based data impu-
tation approaches [29] which rely heavily on crowdsourcing
to give answers to every unsolved imputation task. In this
paper, we propose a crowd-economic way to let the crowd
help adjust the quality model by imputing those values that
the WebPut model are paralyzed for and diagnosing the
potential biases of the EM-based quality model. Our target
here is to improve the quality of imputation results with
the proper crowd intervention cost.

To this end, we actively select a number of blanks
for crowd imputation, and the imputation results can be
used for two issues: Precision of Sources Adjustment and
Correlation Adjustment among Sources. In the rest of this
section, we first introduce how we do active selection for
crowd intervention in Sec. 4.1, and then present when to
stop further crowd guidance in Sec. 4.2.

4.1 Active Crowd Intervention
The purpose of active crowd intervention is to adjust the
EM-based model with as few blanks for crowd-based im-
putation as possible. To achieve this, a set of “informative”
and “diverse” blanks are expected to be selected into a
sampling set for crowd intervention, where “informative”
means having a small correctness probability of the impu-
tation result in WebPut while “diverse” blanks should be
able to help improve the precision and correlations of all
the sources of the EM-based quality model without a bias.

Here we adopt Shannon Entropy to measure the “infor-
mativeness” of a blank b, denoted by E(b) as follows:

E(b) = − ∑
vi∈V b

Pr(vbc = vi∣b)logPr(vbc = vi∣b) (16)

where V b contains all candidate imputation values provided
by all the sources in S to a blank b. The higher the
entropy value, the more informative the blank b is. If the
distribution of the value is skewed, then the associated
entropy value is low. On the contrary, if it is close to
a uniform distribution, then the associated entropy value
is high. For example, the entropy value reaches maximal

when Pr(vbc = vi∣b) = 1/∣V b∣ for each vi ∈ V b. WebPut
outputs imputation result whose correctness probability
is maximal among all the candidate values, thus a high
entropy value often means a small correctness probability
of the imputation result in WebPut.

Given the above, our blank selection strategy can be
described below: Given all the blanks in the blank set
B, we first select top-K blanks with the highest entropy
values from B. Next, we select nsam blanks from these
top-K blanks into a sampling set Bsam, using weighted
sampling, where the weighted sampling method could let
the selected blanks be both “informative” and “diverse” as
has been stated and proved in the literature [15]. Next, we
let the crowd to provide the correct imputation answer to
each of the nsam blanks in the sampling set, such that we
could make an estimation to the accuracy of WebPut over
Bsam and then make proper adjustments to the precision of
sources and the correlation among sources correspondingly.

The imputation values provided by a source s to the
blanks in Bsam can be put into two categories: some of
them would be accepted as the final imputation answers by
WebPut according to the EM-based quality model, while
the others would not. We call the former ones as Model-
Accept Values denoted by V +(s,Bsam) and the latter
ones as Model-Reject Values denoted by V −(s,Bsam).
According to the correct imputation answers provided by
the crowd, we could calculate the accuracy of the values
in V +(s,Bsam) as well as the accuracy of the values in
V −(s,Bsam), denoted by P +

sam(s) and P −
sam(s) respec-

tively. For better understanding, we assume P +
sam(s) and

P −
sam(s) are calculated by ignoring the possible wrong

answers provided by the Crowd. But we take into account
the accuracy of Crowd answers in our experiments and do
the theoretical analysis in the appendix.

However, the estimated accuracy of a source s on the
sampling set Bsam may not always be qualified to reflect
its accuracy on the whole data set denoted by P +(s) and
P −(s) respectively1. According to the literature [41], we
could assume that using P +

sam(s) to estimate the value of
P +(s) has an error margin ε+ with a confidence δ , that is,
P +(s) ∈ [P +

sam(s)+ ε+, P +
sam(s)− ε+] with a confidence δ.

Similarly, we assume using P −
sam(s) to estimate the value

of P −(s) has an error margin ε− with a confidence δ , that
is, P +(s) ∈ [P −

sam(s)+ε−, P −
sam(s)−ε−] with a confidence

δ. Then the values of ε+ and ε− can be computed as follows:

ε+ = Z1− δ2

¿
ÁÁÀP +

sam(s)(1 − P +
sam(s))

n+sam
⋅ n

+ − n+sam
n+ − 1

(17)

ε− = Z1− δ2

¿
ÁÁÀP −

sam(s)(1 − P −
sam(s))

n−sam
⋅ n

− − n−sam
n− − 1

(18)

1. The reason that we do the estimation on both model-accept values
and model-reject values respectively is that: the samples on one of the two
sets of values could be small, which requires a much smaller sampling set
for the estimation than doing the estimation on the whole value set without
using such a classification. Besides, we do not know the number of really
true and false values of the whole data set but we know the number of
mode-accept and model-reject value which makes our estimation strategy
feasible.
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where δ is a user-setting confidence (which is set to 95% in
our experiments), n+ and n+sam are the numbers of model-
accept values provided by s on the whole data set and on
the sampling set Bsam respectively, while n− and n−sam are
the numbers of model-reject values provided by s on the
whole data set and on the sampling set Bsam respectively.

We use a threshold εmax (which is set to εmax = 0.1 in
our experiments) to find qualified estimations on sources,
that is, if ε+ ≤ εmax (or ε− ≤ εmax), we say P +

sam(s) (or
P −
sam(s)) is a qualified estimation to P +(s) (or P −(s)),

then we should adjust the precision of the source s accord-
ingly. Otherwise, the estimation is unqualified and we take
no further adjustment step to s.

To facilitate the Crowd guidance process, our method is
based on the following two propositions which are about
the adjustments to the Precision of Sources and Correlation
among Sources respectively:

Proposition 1: If the EM-based quality model always
takes the correct answers provided by a source s as incor-
rect ones, then the precision of s should be increased. The
vice versa.

Proposition 2: If the EM-based quality model always
takes the correct answers provided by a set of source
communities S as incorrect ones, then the joint precision of
all the source communities in S ( w.r.t. correlation among
source communities) which provide these correct answers
should be larger than the value by assuming these source
communities being independent. The vice versa.

Example 3: Continue with Example 1 and Example 2,
suppose we find that our WebPut model always takes the
correct values provided by s1 and s2 as incorrect ones with
the help of crowd workers. If we assign a higher initial
precision to s1 and s2, we could get a higher correctness
probability for the value e (please refer to Example 2),
such that e would be taken as a right answer by our WebPut
Model. Likewise, we can use the same mechanism to adjust
the correlation factor of sources.

In the following, we show how to improve the EM-based
quality model according to P +

sam(s) and P −
sam(s).

1) Precision of Sources Adjustment: Given a threshold
ω1, if P +

sam(s) < ω1, we say the EM-based quality model
mistakenly predicts a large number of the answers provided
by source s as correct ones. According to Proposition 1, the
precision of s should be decreased to improve the weight
of source s in the quality model. Basically, the value of
P (s) decreases with P +

sam(s). Denoting P (s) the current
prior precision of s, we adopt the following rule to update
P (s) into P ′(s).

P ′(s) = P (s) − α ⋅ (ω1 − (P +
sam(s))) (19)

where α is a parameter to control the step size of our
adjustment.

Likewise, given a threshold ω2, if P −
sam(s) < ω2, we say

the EM-based quality model mistakenly predicts a large
number of answers provided by source s as incorrect ones.
Similar to Eq. 19, denote P (s) the current prior precision
of s, we adopt the following rule to update P (s) into P ′(s).

P ′(s) = P (s) + β ⋅ (ω2 − (P −
sam(s))) (20)

where β is a parameter to control the step size of our
adjustment.
2) Correlation Factor Adjustment: If we consider a
source as source community, we then can address the
scenario of source community (referring to source merging
step in EM-based quality model) using the same method
above which is also described in Proposition 2. However,
we can not always do that for all the sources which may
only provide a portion of same answers for imputing all
the blanks. In this circumstance, we need to adjust the
correlation factor of a source set S as described in Eq. 11.
Proposition 2 provides us a good enlightenment for doing
that. Recall Eq. 3, the correctness probability of a value
v, Pr(vbc = v∣V⃗ b, b), is determined by the joint distribution
(referring to Pr(V⃗ b∣vbc = v, b)) of those sources that provide
the value v. More clearly, the larger the Pr(V⃗ b∣vbc = v, b)
value, the larger the value of Pr(vbc = v∣V⃗ b, b) is. We now
substitute Eq. 11 into Eq. 2, then we can rewrite Eq. 2 as
follows:

Pr(V⃗ b∣vbc = v, b) =
∏
S′∈S

Corr(S′) ∏
(si,ej)∈SE

Pr((si, ej) → vi,j ∣vbc = v, b)

(21)
Clearly, larger Corr(S′) value will lead to larger Pr(vbc =
v∣V⃗ b, b) value. Since Corr(S′) is somewhat abstract for
us, directly increasing or decreasing its value is intractable
for us. Thus, we first translate it into an easy way for
better control. Given a source set S in which all the
sources provide the values for each blank, we update its
precision similar to the adjustment method in the Precision
of Sources Adjustment, that is, we update P (S) into
P ′(S) according to Eq. 19 and Eq. 20 as follows:

P ′(S) = P (S) − α ⋅ (ω1 − (P +
sam(s)))) (22)

P ′(S) = P (S) + β ⋅ (ω2 − (P −
sam(s))) (23)

Then we rewrite Eq. 3 as

Pr(vbc = v∣V⃗ b, b) = Pr(V⃗ b∣vbc = v, b)
Pr(V⃗ b∣vbc = v, b) + t

(24)

where t is a constant. Then by transforming above equation,
we can easily obtain that

Pr(V⃗ b∣vbc = v, b) =
t ⋅ Pr(vbc = v∣V⃗ b, b)
1 − Pr(vbc = v∣V⃗ b, b)

(25)

For a source set S, assuming the other sources are indepen-
dent, we then have the following equation by substituting
Eq. 21.

Corr(S) = t ⋅ Pr(vbc = v∣V⃗ b, b)
u ⋅ (1 − Pr(vbc = v∣V⃗ b, b))

(26)

where u = ∏(si,ej)∈SE Pr((si, ej) → vi,j ∣vbc = v, b). But
note that Pr(vbc = v∣V⃗ b, b) may have different values for
different blanks in the samples, so here we use the average
correct possibility of those values to substitute Pr(vbc =
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v∣V⃗ b, b) for estimating Corr(S). Besides, Corr(S) has
different values between the same correct answers of S,
denoted by Corr+(S), and the the same incorrect answers
of S, denoted by Corr−(S). Consequently, we can then
update Corr+(S) into Corr+(S)′ and Corr−(S) into
Corr−(S)′ according to the following two equations.

Corr+(S)′ =
t

u
⋅ (u ⋅Corr+(S) + t)
t + α ⋅ (ω1 − (P +

sam(s)))(u ⋅Corr+(S) + t)
− t

(27)

Corr−(S)′ =
t

u
⋅ (u ⋅Corr−(S) + t)
t − β ⋅ (ω2 − (P −

sam(s))))(u ⋅Corr−(S) + t)
− t

(28)

4.2 When to Stop Crowd Intervention
An important issue of using Crowdsourcing is to decide
when to stop further crowd guidance to save the crowd
intervention overhead. In our case, we need to consider the
stop conditions for two crowd intervention operations, that
is, when to stop adjusting the precision of source and when
to stop adjusting the correlation among sources with single
sampling.

Intuitively, we stop using crowd to do further adjustment
to the quality model when the performance of the EM-
based quality model becomes stable i.e., the accuracy of
imputation results holds steady. However, given that the
change with a single round of adjustment is not that
reliable, we only make our decisions on stopping further
adjustment to the precision of a specific source (or the
correlation among specific sources) when we observe a
stable performance to the precision (or correlation) after
a new round of adjustments.

As Kappa statistics is a commonly used statistic that
takes into account the fact that observers will sometimes
agree or disagree simply by chance, here we adopt the
Kappa statistics [37] to measure the degree of stability of
the quality model. Specifically, the kappa coefficient κ can
be calculated as follows:

κ = Ao −Ae

1 −Ae
(29)

where Ao is an observed agreement and Ae is an agreement
expected by chance. The Kappa statistic measures agree-
ment expected by chance by modeling each quality model
at a state. Formally, we calculate Ae as follows:

Ae = ∑
c∈{−1,1}

Pr(c∣Mt) ⋅ Pr(c∣Mt+1) (30)

where Mt and Mt+1 are the quality model at two different
states t and t + 1, and Pr(c∣Mt) is the precision that
the Model Mt claims a value as correct or incorrect.The
range of κ is between −1 and 1. When κ = 1, it means
the prediction values of Mt and Mt+1 are completely
consistent.

We test the sensitivity of the kappa coefficient in our
experiments, which show that κ (which is set as 0.8 in
our experiment) is quite robust. One of the advantages of

this method for stopping crowd-aided is that the users can
control how aggressive our model performs by giving some
constraints (such as the cost limitation).

In practice, the agreements between models of several
consecutive states may fluctuate due to some casual factors,
such as wrong crowd-based imputation to some blanks.
Thus, we implement a smoothing window of size k (k = 3 is
proper in our experiment) to average the agreements among
the most recent k models.

5 EXPERIMENTS

This section presents our experimental results. The experi-
mental environment is a computer with four-core Intel Core
i7 processor, 16GB memory, running Windows 8. All the
approaches are implemented by Java.

5.1 Data Sets and Metrics

We experiment on three real and one simulated data sets.
Real Data Sets:
1) Personal Information Table (PersonInfo): This is a

round 50k-tuples, 9-attributes table that has been used
previously in WebPut [26] and TRIP [24], which con-
tains contact information for academics including name,
email, title, university, street, city, state, country and zip
code. This information was collected from more than
1000 different universities in USA, UK, Canada and
Australia.

2) Multilingual Movies Table2 (Movies): This table con-
tains names of about 15k movies in 5 different languages
collected from Wikipedia and MovieLens.

3) Hospital Information Table3 (Hospital): This data set
has 25k tuples under 6 attributes. The table contains
some basic contact information of hospitals located
in USA and Canada, including their names, countries,
states, zip codes, street addresses and phone number.

The three data sets above are complete relational ta-
bles. To generate incomplete tables for our experiments,
we remove attribute values at random positions from the
complete table, while making sure that at least one key
attribute value will be kept in each tuple. Each reported
result is the average of 3 evaluations, that is, for each
missing value percentage (1%, 10%, 20%, 30%, 40%, 50%,
60%), 3 incomplete tables will be generated with 3 random
seeds, and the experimental results we present are the
average results based on the 3 generated incomplete tables.
We perform data imputation to these generated incomplete
tables and then evaluate the solution by using the original
complete table as ground truth. We tested these three real-
world datasets on Amazon Mechanical Turk (AMT), which
is a widely used crowdsourcing marketplace. Each answer
for a blank is awarded 0.03 USD for all the three datasets.
We manually create qualification test by selecting 20 tasks,
and each worker should pass the qualification test before
he could work on our tasks.

2. https://pan.baidu.com/s/1DOUHNwsn6FSYIVuyIxoyBA
3. https://pan.baidu.com/s/1anuLIuVGkxa8jS8PXNhN3A

https://pan.baidu.com/s/1DOUHNwsn6FSYIVuyIxoyBA
https://pan.baidu.com/s/1anuLIuVGkxa8jS8PXNhN3A
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Fig. 4. Comparing the Effectiveness of the Proposed Quality Models for WebPut on the Three Data Sets
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Fig. 5. Comparing the Effectiveness of the Proposed Quality Models for WebPut on the Simulated Data
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Fig. 6. Evaluating the Influence of the Sampling Set Size on the Three Data Sets

Simulated Data: For better evaluating the performance of
our method, we simulate different truth finding scenarios
to compare our method with the existing ones.

Data Generation. In each experiment, we generate 100
sources 5 extractors and 50000 blanks. For all extractors,
their precisions and recalls are drawn from uniform dis-
tribution. For each source, its precision is drawn from
a distribution which we will describe below. In order to
generate the correlation among sources, we first generate
20 sources independently. Next, for the rest of 80 sources,
we randomly copy some data (ranging from 10% − 90%)
from one of the 20 sources and then randomly change
10% of these duplicated data. Each of the 80 sources only
duplicates data from one other source once. But all the
sources satisfy their precision limit.

Scenario 1: P(s) ∼ Uniform (a, b). In this scenario, the
precisions of sources are drawn from a uniform distribution
with a = 0.5 and 0.9. The precisions of sources are
uniformly distributed.

Scenario 2: P(s) ∼ Normal (µ,σ2). In this scenario, the
precisions of sources are drawn from a Normal distribution
with mean µ = 0.7 and variance σ2 = 0.04. The smaller the
σ is, the more centralized the precisions of sources.

Scenario 3: P(s) ∼ Student’s t − (ν). In this scenario,
the precisions of sources are drawn from a student’s t-
distribution with freedom ν = 2. Student’s t-distribution has
heavier tails when the freedom ν is smaller. As a result,
there are more sources with very low or high precision.
Metrics: We evaluate the effectiveness of the proposed
quality models in improving the quality of the WebPut
results with Imputation Accuracy, which is the percentage
of the correctly imputed blanks among all the blanks in a
data set. Besides, we use the Number of Crowd Interven-
tion Times, denoted by Ncrowd, to evaluate our efficiency
optimization strategy.

5.2 Effectiveness of the Quality Models
We now evaluate the effectiveness of the quality models by
comparing the imputation accuracy of the following several
imputation approaches.
a) Orig-WebPut: The original WebPut approach, which

simply do Web-based data imputation with no quality
control model as described in the literature [26].

b) EM-WebPut: This is the WebPut approach with only
the proposed EM-based quality control model.

c) Crowd-WebPut: This is the WebPut approach with the
crowd-guided EM-based quality control model. In order
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to evaluate the effectiveness of the crowd guidance in
adjusting the EM-based model, we do not directly take
the blanks labeled by crowd into account in calculating
the imputation accuracy.

d) EM*-WebPut: Also, to further evaluate the effective-
ness of the crowd guidance in adjusting the EM-based
model, we also design this “virtual” approach which
adopts the true values of all the three groups of factors
to operate the EM-based model.

e) Crowd*-WebPut: This is the WebPut approach with
the Crowd guided EM-based quality control model,
which takes the blanks labeled by crowd into account
in calculating the imputation accuracy. Therefore, this
is the final quality model we could reach in this paper.

f) CRH : CRH [23] formulates truth finding problem as
an optimization problem, seeking the optimal truth and
source reliability to minimize the weighted deviation
between the truth and the observations.

g) KBT : [9] proposes a multi-layer probabilistic model to
solve truth finding problem. In their framework, source
reliability, extractor reliability and truth are model pa-
rameters to estimate.

h) RGMM : In [44], truth finding problem is modeled as
seeking the maximum likelihood estimate of truth while
incorporating source bias. Based on EM techniques,
RGMM proposes population-based and sample-based
solutions to solve the problem.

For the methods Orig-WebPut, CRH and RGMM, we
only use one extractor with the highest precision since they
do not consider the role of extractors. In other words, these
methods take the data extracted by the extractor as the real
data of sources. Some examples of the extractors for each
dataset can be found in the appendix.

Results on Real Data: As can be observed in all the
three sub-figures in Fig. 4, as the missing ratio increases, the
performance of all the eight approaches decreases linearly,
but the Orig-WebPut always reaches the lowest imputation
accuracy. While EM-WebPut, KBT, CRH and RGMM
reach similar performance without the help of Crowd, the
Crowd-WebPut could further improve the EM-WebPut by
5 − 7.5%. Besides, The pretty closeness between the line
of Crowd-WebPut and EM*-WebPut shows that the crowd
guidance can adjust the EM-based model to approach the
best state it could achieve. Finally, the Crowd*-WebPut
model could still improve the performance of the Crowd-
WebPut and EM*-WebPut by around 1.8 − 3.2%, which
shows that Crowd*-WebPut can effectively pick up those
can not be predicted correctly by EM-WebPut.

Results on Simulated Data: Since the missing ratio
makes no sense on the simulated data, we report the
experimental results with different source number S =
{10,20, ...,100} in terms of all methods. From Fig. 5, we
can see that the performance of all the seven approaches
increases approximately linearly as the number of sources
increase in scenario 1 and 2. All the methods perform
best in scenario 1 because there are more high-precision
sources and many sources copy from them. In Scenario 2,
Crowd-WebPut’s improvement is not as prominent as that

PersonInfo(10%) EM-WebPut Crowd-WebPut Crowd*-WebPut
NoExtractor 0.852 0.876 0.891
WithExtractor 0.878 0.912 0.954
Movie(30%) EM-WebPut Crowd-WebPut Crowd*-WebPut
NoExtractor 0.783 0.795 0.826
WithExtractor 0.802 0.843 0.875
Hospital(50%) EM-WebPut Crowd-WebPut Crowd*-WebPut
NoExtractor 0.711 0.724 0.762
WithExtractor 0.739 0.767 0.803

TABLE 2
Evaluating the Role of Extractors

in Scenario 1 and 3 due to the reason that the precisions
of most sources are similar. So even there are some com-
plex correlation among the sources, it will not affect the
imputation accuracy a lot. In scenario 3, we surprisingly
find that the performance of EM-WebPut, KBT, RGMM
and CRH decreases when the number of sources reach
over 40. The reason is that there are a lot of low-precision
sources and many sources copy data from them and change
the data. Thus these methods without correlation detection
can not keep good performance, while Crowd-WebPut and
Crowd*-WebPut can always reach good performance even
with complex correlations among sources.

5.3 Effect of the accuracy of Crowd Answers

This section evaluates the effect of the accuracy of crowd
answers to the performance of our approach. Here we use
a simulated crowd in scenario 2 for evaluation. We denote
the accuracy of Crowd Answers as Acrowd. We find that
the higher Acrowd is, the faster the convergence is. This
finding is supported by observing Fig. 7(a)(b)(c). In other
words, we would need more answers for Crowd with lower
accuracy. Moreover, regardless of the setting of Acrowd,
the accuracy of our model is gradually increased with the
reception of the Crowd Answers. This suggests that the
crowd is conducive for our model in general.

5.4 Evaluating the Role of Extractors

In this section, we evaluate the role of extractors in EM-
WebPut, Crowd-WebPut and Crowd*-WebPut under two
different situations: (1) only using one extractor with the
highest accuracy; (2) considering the precision and recall of
extractors we proposed in this paper. Situation (1) takes the
data extracted by extractors as the data of sources which
means ignoring the errors of extractors. So that we call this
method as NoExtractor and the method under Situation (2)
as WithExtractor.

As can be seen from Table 2 (the missing ratio of
PersonInfo, Movie and Hospital are respectively 10%, 30%
and 50%), WithExtractor has better performance than
NoExtractor with around 1.9% − 2.8%. Beside, WithEx-
tractor could provide better framework for Crowd-Aided
Model since we can see that Crowd-WebPut and Crowd*-
WebPut could only improve EM-WebPut by 1.2% − 2.4%
and 3.3% − 5.1% with NoExtractor. While using With-
Extractor, Crowd-WebPut and Crowd*-WebPut could im-
prove EM-WebPut by 2.8% − 4.1% and 6.4% − 7.6%.
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Fig. 7. Evaluating the Effect of the accuracy of Crowd Answers on the Stimulated Data Set

Dataset CrowdImp CrowdAdjEM SmartCAdjEM

PersonInfo Accuracy 0.973 0.954 0.951
Ncrowd 1143 456 308

Movies Accuracy 0.931 0.904 0.896
Ncrowd 1498 482 371

Hospital Accuracy 0.915 0.884 0.882
Ncrowd 1307 421 346

TABLE 3
Evaluating the Crowd Cost Saving Strategies

5.5 Evaluating the Crowd Cost Saving Strategy
To evaluate the effectiveness of our crowd cost saving
strategy, we compare the number of crowd intervention
times per 10000 blanks as well as the imputation accuracy
of the following four methods on the three data collections
by setting the missing ratio to 10%.
a) CrowdImp: This baseline asks the crowd to provide the

correct missing value for every missing blank that can
not be filled with a high-confidence value by WebPut.

b) CrowdAdjEM: This is the method we use the crowd to
help adjust the EM model for web-based data imputa-
tion. This method sets a fixed size of sampling set (say
5%) for crowd intervention in order for improving the
EM model.

c) SmartCAdjEM: On the basis of CrowdAdjEM, we also
adopt the Kappa statistics to help find a proper time to
stop doing further adjustment with crowd intervention
for saving crowd cost.

As can be observed in Table 3, on all the three data
sets, the CrowdImp always uses the maximum Ncrowd

to reach the highest imputation accuracy. Comparatively,
the CrowdAdjEM uses only round 30% Ncrowd of that
used by CrowdImp by only sacrificing within 0.05 imputa-
tion accuracy, which proves the advantage of our crowd
intervention way compared to the baseline one. Finally,
the SmartCAdjEM can further reduce around 20% more
Ncrowd of that used by CrowdAdjEM by only slightly
decreasing the imputation accuracy a bit. Overall, the
SmartCrowdAidEM strategy can effectively save more than
75% crowd cost.

5.6 Evaluation with Correlation and Crowd Cost
In this section, we compare our methods with two state-
of-the-art models which also take the correlation among
sources in consideration.

d) AccuDepen: [49] takes into consideration the copying
relationships between sources with a Bayesian truth
detection model. AccuDepen penalizes the vote count

of a source if the source is detected to be a copier of
another source.

e) PrecRecCorr: [33] considers correlation between
sources and applies the inclusion-exclusion principle
for exact solution. This work relies on training data
which uses the crowdsourcing platforms to facilitate
the labeling process.

Here we need to point out that correlation detection
inevitably involves prior knowledge as we need to know
which values are really true or false. In data imputation
system, it is unreasonable to assume that we always have
some gold standard data which can correctly estimate the
correlation among sources. So the cost of Crowd (or prior
knowledge) is an important part to be evaluated.

As illustrated in Fig. 6, CrowdAdjEM only needs 5% of
the data to reach a satisfying accuracy, while PrecRecCorr
needs at least 20% of the data since PrecRecCorr requires a
lot of data to estimate the quality of sources with small bias
in prior. The performance of AccuDepen is similar with that
of PrecRecCorr. However, since AccuDepen only considers
the copying relationships between sources, the accuracy of
Accudepen is a little less than that of PrecRecCorr.

6 RELATED WORK

Data imputation has been studied for decades. While most
of the previous efforts focus on recovering missing quan-
titive data, which is either continuous data or discrete data
with a finite number of values [27], only a small portion
of attention has been paid on recovering missing non-
quantitive data with an infinite number of values.

Existing techniques for non-quantitive data imputation
can be roughly divided into three categories, i.e., Local-
based approaches, Crowdsourcing-based approaches and
External resource based approaches. The local-based ap-
proaches mainly deduce missing values based on the com-
plete part of data set [17], [16], [6], which can only reach
limited imputation recall due to lacking of enough knowl-
edge about the missing data. To reach higher imputation
recall, some recent work turn to outsource the task to crowd
workers [48], [45], [29] when the traditional methods are
not capable of filling the missing values. However, crowd-
based imputation could be expensive given that it pays
money for every human input. Differently, the external
resource based approaches resort to external sources such
as existing domain databases, online encyclopedia [42] or
the world wide web [25], [26], [19], [40] for answering
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the missing values, which could reach a much higher
imputation recall with much less human cost.

Much work has been conducted to harvest missing val-
ues from either web lists [11], [19], or web tables [18],
[22], but a more general web-based imputation approach
called WebPut was proposed to impute missing values
from all kinds of web documents [25], [26]. Typically,
WebPut formulates imputation queries based on the existing
information of the original data set, and then combine the
Information Extraction techniques to get more concrete and
efficient queries for the purpose of getting more precise
imputation results. WebPut has been proved to reach a
higher recall than the local-based methods. However, there
are also some kinds of missing values WebPut can not work
well, since either too much noises on the Web or little
information about the missing values.

To improve the quality of values retrieved from the Web,
there has been a lot of work assessing the quality of web
sources by PageRank [2], Authority analysis [21], web
spams [4] and so on [20], [35]. Our work is relevant to
the truth-finding problem [47], [10] whose goal is to find
the truths from data provided by multiple sources. Most
of the recent work in this field evaluates the confidence
of sources based on link-based measures [30], [31], IR-
based measures [43], accuracy-based measures [33], [23].
Li et al. [23] propose an optimization framework, seeking
the optimal truth and source reliability to minimize the
weighted deviation between the truth and the observations.
Besides, some probabilistic methods [44], [47], [9], [32]
were developed to address the truth-finding problem. The
basic idea is to formulate source data as certain mixture
of distributions and incorporate source reliability as some
random variable into the probabilistic models. These ap-
proaches differ in the way of selecting proper distributions
and evaluating sources. To find the truth, these approaches
usually leverage the EM method which tends to maximize
likelihood and iteratively update model parameters for
inference. But most of them neglect the correlation among
sources and assume that the sources are independent by
default if they have no ground truth, thus they can not
accurately find the truth in some cases. An experimental
evaluation for truth-finding can be found in [38].

The correlation among sources has been studied pre-
viously. The most typical correlation detection is copy
detection which has been studied in [7], [8] for structured
data. Some recent work [33] proposes an exactly complete
correlation detection including copying, positive correlation
and negative correlation which could measure correlation
among sources pretty accurately, but it often needs a lot
of prior knowledge, i.e., a lot of manual labels. So far, no
unsupervised methods could tackle the complete correlation
among sources. [5] introduces an active-learning-based
truth estimator for social networks, but it needs an influence
network which we can not obtain in our problem.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we propose to build a quality model to control
the quality of web-based data imputation results. An EM-

based model is firstly built, which is then improved with
crowd intervention. The experimental study conducted on
several data collections proves that the EM-based quality
model improves the imputation quality by 10%, while the
crowd intervention further enhances the quality by 5%.
Besides, our proposed strategies could save 75+% of the
crowd cost.

This work only considers one possible way to improve
the quality of WebPut with crowdsourcing, our future work
would try some other ways such as taking the crowdsourc-
ing as a sort of data sources to complement the drawbacks
of the web sources. Besides, this paper does not discuss on
the possibility that the employed crowd workers could also
make mistakes in data imputation, and different workers
may get different payment to accomplish the same task.
Our ongoing work expects to find a more applicable way
for crowd intervention.
Acknowledgements: This research is partially supported
by the Natural Science Foundation of Jiangsu Province
(No. BK20191420), National Natural Science Foundation
of China (No. 61632016, 61572335, 61572336, 61772356,
61872258), the Natural Science Research Project of
Jiangsu Higher Education Institution (No. 17KJA520003,
18KJA520010, 19KJA610002) and Dongguan Innovative
Research Team Program (No.2018607201008).

REFERENCES

[1] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages 746–755. IEEE, 2007.

[2] S. Brin and L. Page. Reprint of: The anatomy of a large-scale hypertextual
web search engine. Computer networks, 56(18):3825–3833, 2012.

[3] R. A. Brualdi. Introductory combinatorics. New York, 1992.
[4] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your

neighbors: Web spam detection using the web topology. In Proceedings
of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 423–430. ACM, 2007.

[5] H. Cui, T. Abdelzaher, and L. Kaplan. A semi-supervised active-learning truth
estimator for social networks. In The World Wide Web Conference, pages 296–
306. ACM, 2019.

[6] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, and K. G. Moons. Review:
a gentle introduction to imputation of missing values. Journal of clinical
epidemiology, 59(10):1087–1091, 2006.

[7] X. L. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava. Global detection of
complex copying relationships between sources. Proceedings of the VLDB
Endowment, 3(1-2):1358–1369, 2010.

[8] X. L. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and copying
detection in a dynamic world. Proceedings of the VLDB Endowment, 2(1):562–
573, 2009.

[9] X. L. Dong, E. Gabrilovich, K. Murphy, V. Dang, W. Horn, C. Lugaresi,
S. Sun, and W. Zhang. Knowledge-based trust: Estimating the trustworthiness
of web sources. Proceedings of the VLDB Endowment, 8(9):938–949, 2015.

[10] X. L. Dong, B. Saha, and D. Srivastava. Less is more: Selecting sources wisely
for integration. Proceedings of the VLDB Endowment, 6(2):37–48, 2012.

[11] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational tables from
lists on the web. Proceedings of the VLDB Endowment, 2(1):1078–1089, 2009.

[12] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–
174, 2010.

[13] S. Fortunato and D. Hric. Community detection in networks: A user guide.
Physics Reports, 659:1–44, 2016.

[14] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb:
answering queries with crowdsourcing. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 61–72.
ACM, 2011.

[15] C. Gokhale, S. Das, A. H. Doan, N. Rampalli, N. Rampalli, J. Shavlik, and
X. Zhu. Corleone: hands-off crowdsourcing for entity matching. In ACM
SIGMOD International Conference on Management of Data, pages 601–612,
2014.

[16] J. W. Grzymala-Busse, W. J. Grzymala-Busse, and L. K. Goodwin. Coping
with missing attribute values based on closest fit in preterm birth data: A rough
set approach. Computational intelligence, 17(3):425–434, 2001.



IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 14

[17] J. W. Grzymala-Busse and M. Hu. A comparison of several approaches to
missing attribute values in data mining. In Rough sets and current trends in
computing, pages 378–385. Springer, 2001.

[18] R. Gummadi, A. Khulbe, A. Kalavagattu, S. Salvi, and S. Kambhampati.
Smartint: using mined attribute dependencies to integrate fragmented web
databases. Journal of Intelligent Information Systems, 38(3):575–599, 2012.

[19] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the web. Proceedings of the VLDB Endowment, 2(1):289–
300, 2009.

[20] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640–651. ACM, 2003.

[21] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM (JACM), 46(5):604–632, 1999.

[22] G. Koutrika. Entity reconstruction: Putting the pieces of the puzzle back
together. HP Labs, Palo Alto, USA, 2012.

[23] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts
in heterogeneous data by truth discovery and source reliability estimation.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 1187–1198. ACM, 2014.

[24] Z. Li, L. Qin, H. Cheng, X. Zhang, and X. Zhou. Trip: An interactive
retrieving-inferring data imputation approach. IEEE TKDE, 27(9):2550–2563,
2015.

[25] Z. Li, M. A. Sharaf, L. Sitbon, S. Sadiq, M. Indulska, and X. Zhou. Webput:
Efficient web-based data imputation. In Web Information Systems Engineering-
WISE 2012, pages 243–256. Springer, 2012.

[26] Z. Li, M. A. Sharaf, L. Sitbon, S. Sadiq, M. Indulska, and X. Zhou. A web-
based approach to data imputation. World Wide Web, 17(5):873–897, 2014.

[27] S. G. Liao, Y. Lin, D. D. Kang, D. Chandra, J. Bon, N. Kaminski, F. C.
Sciurba, and G. C. Tseng. Missing value imputation in high-dimensional
phenomic data: imputable or not, and how? BMC bioinformatics, 15(1):346,
2014.

[28] G. J. Mclachlan and T. Krishnan. The EM Algorithm and Extensions, Second
Edition. Springer, 2007.

[29] H. Park and J. Widom. Crowdfill: Collecting structured data from the
crowd. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 577–588. ACM, 2014.

[30] J. Pasternack and D. Roth. Knowing what to believe (when you already
know something). In Proceedings of the 23rd International Conference on
Computational Linguistics, pages 877–885. Association for Computational
Linguistics, 2010.

[31] J. Pasternack and D. Roth. Making better informed trust decisions with
generalized fact-finding. In IJCAI, volume 11, pages 2324–2329, 2011.

[32] J. Pasternack and D. Roth. Latent credibility analysis. In Proceedings of the
22nd international conference on World Wide Web, pages 1009–1020. ACM,
2013.

[33] R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and D. Srivastava.
Fusing data with correlations. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 433–444. ACM, 2014.

[34] J.-J. Shen, C.-C. Chang, and Y.-C. Li. Combined association rules for dealing
with missing values. Journal of Information Science, 2007.

[35] A. Singh and L. Liu. Trustme: anonymous management of trust relationships
in decentralized p2p systems. In Peer-to-Peer Computing, 2003.(P2P 2003).
Proceedings. Third International Conference on, pages 142–149. IEEE, 2003.

[36] Tan, P. N. Steinbach, M. Kumar, and Vipin. Introduction to data mining =.
Posts & Telecom Press, 2006.

[37] A. J. Viera, J. M. Garrett, et al. Understanding interobserver agreement: the
kappa statistic. Fam Med, 37(5):360–363, 2005.

[38] D. A. Waguih and L. Berti-Equille. Truth discovery algorithms: An experi-
mental evaluation. arXiv preprint arXiv:1409.6428, 2014.

[39] Q. Wang, J. Rao, et al. Empirical likelihood-based inference under imputation
for missing response data. The Annals of Statistics, 30(3):896–924, 2002.

[40] R. Wang and W. Cohen. Iterative set expansion of named entities using the
web. In ICDM, pages 1091–1096. IEEE, 2008.

[41] L. Wasserman. All of statistics: a concise course in statistical inference.
Springer Science & Business Media, 2013.

[42] R. West, A. Paranjape, and J. Leskovec. Mining missing hyperlinks from
human navigation traces: A case study of wikipedia. In WWW, pages 1242–
1252, 2015.

[43] M. Wu and A. Marian. Corroborating answers from multiple web sources. In
WebDB, 2007.

[44] H. Xiao, J. Gao, Z. Wang, S. Wang, L. Su, and H. Liu. A truth discovery
approach with theoretical guarantee. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1925–1934. ACM, 2016.

[45] C. Ye and H. Wang. Capture missing values based on crowdsourcing. In
Wireless Algorithms, Systems, and Applications, pages 783–792, 2014.

[46] S. Zhang. Parimputation: From imputation and null-imputation to partially
imputation. IEEE Intelligent Informatics Bulletin, 9(1):32–38, 2008.

[47] B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han. A bayesian approach to
discovering truth from conflicting sources for data integration. Proceedings of
the VLDB Endowment, 5(6):550–561, 2012.

[48] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in
crowdsourcing: Is the problem solved? Proceedings of the VLDB Endowment,
10(5):541–552, 2017.

[49] X. L. Dong, L. Berti-Equille, and D. Srivastava.. Integrating conflicting
data: the role of source dependence. Proceedings of the VLDB Endowment,
2(1):550–561, 2009.

APPENDIX

Due to the limitation of space, we put the appendix online:
https://pan.baidu.com/s/1Nvk2jmKmj s6RZUJWHnPFA

Binbin Gu is currently working towards Ph.D.
degree in Computer Science and Engineer-
ing at the University of California, Santa
Cruz, US. His research interests include
Knowledge Fusion, Information Extraction,
Distributed Systems and NLP. He has pub-
lished several papers on TKDE, ICDE and
DASFAA etc.

Zhixu Li is an associate professor in the
Department of Computer Science & Technol-
ogy at Soochow University, China. He used
to work as a research fellow at KAUST. He
received his Ph.D. degree from the University
of Queensland in 2013, and his B.S. and
M.S. degree from Renmin University of China
in 2006 and 2009 respectively. His research
interests are Knowledge Graph, Question
Answering, Data Quality and various Big
Data Applications.
An Liu is a professor in the Department of
Computer Science & Technology at Soochow
University. Prior to that in 2014, he was a
Senior Research Associate in the Joint Re-
search Center of City University of Hong
Kong (CityU) and University of Science &
Technology of China (USTC). He received
his Ph. D. from both CityU and USTC in
2009. His research interests include security,
privacy, and trust in emerging applications;
cloud computing; and services computing.
Jiajie Xu is an associate professor in the
Department of Computer Science and Tech-
nology at Soochow University. He got his
Ph.D. and Master degree from Swinburne
University of Technology and University of
Queensland in 2006 and 2011 respectively,
and then worked in the Institute of Software,
Chinese Academy of Sciences as assistant
professor before joining Soochow University.
His research interests are Spatio-temporal
Database Systems and Big Data Analytics.
Lei Zhao is a Professor with the School of
Computer Science and Technology at Soo-
chow University. He received his Ph.D. de-
gree in Computer Science from Soochow
University in 2006. His recent research is
to analyze large graph database in an ef-
fective, efficient, and secure way. He has
published over 100 papers including more
than 20 published in well-known journals and
conferences such as ICDE, DASFAA, WISE,
JCST.
Xiaofang Zhou is a Professor of computer
science with The University of Queensland.
He is the Head of the Data and Knowledge
Engineering Research Division. He has been
working in the area of spatial and multimedia
databases, data quality, high performance
query processing, Web information systems
and bioinformatics, co-authored over 250 re-
search papers with many published in top
journals and conferences.

https://pan.baidu.com/s/1Nvk2jmKmj_s6RZUJWHnPFA

	Introduction
	Problem Statement
	EM-based Quality Modeling
	Inferring with Independent Sources
	Inferring with Source Correlation
	Problems Analysis

	Crowd-Aided Quality Control
	Active Crowd Intervention
	When to Stop Crowd Intervention

	Experiments
	Data Sets and Metrics
	Effectiveness of the Quality Models
	Effect of the accuracy of Crowd Answers
	Evaluating the Role of Extractors
	Evaluating the Crowd Cost Saving Strategy
	Evaluation with Correlation and Crowd Cost

	Related Work
	Conclusions and Future Work
	References
	Appendix
	Biographies
	Binbin Gu
	Zhixu Li
	An Liu
	Jiajie Xu
	Lei Zhao
	Xiaofang Zhou


