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Abstract. This paper works on fine-grained entity typing without using
external knowledge for Knowledge Graphs (KGs). Aiming at identifying
the semantic type of an entity, this task has been studied predominantly
in KGs. Provided with dense enough relations among entities, the exist-
ing mainstream KG embedding based approaches could achieve great
performance on the task. However, many entities are sparse in their rela-
tions with other entities in KGs, which fails the existing KG embedding
models in fine-grained entity typing. In this paper, we propose a novel KG
embedding model for relation-sparsity entities in KGs. In our model, we
map all attributes and types into the same vector sapce, where attributes
could be granted with different weights according to an employed atten-
tion mechanism, while attribute values could be trained as bias vectors
from attribute vectors pointing to type vectors. Based on this KG embed-
ding model, we perform entity typing from coarse-grained level to more
fine-grained level hierarchically. Besides, we also propose ways to uti-
lize zero-shot attribute values that never appear in the training set. Our
experiments performed on real-world KGs show that our approach is
superior to the most advanced models in most cases.

Keywords: Fine-grained entity typing · Knowledge graph
embedding · Knowledge graph

1 Introduction

Type information of entities is very important in Knowledge Graphs (KGs).
Unfortunately, many entities’ type information is usually missing for many enti-
ties even in some well-known KGs such as Yago [20] and DBPedia [1]. To com-
plete the missing type information in KGs, the task of entity typing [15] is
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Fig. 1. An example of fine-grained entity typing in KG

proposed, aiming at identifying the semantic type (e.g., Artist) of an entity
(e.g., Leonardo da Vinci) in KGs.

While traditional entity typing approaches only focus on assigning entities
with a small set of coarse-grained types including Person, Organization, Location
and Others [19], fine-grained entity typing assigns more specific types to
entities, which could form a type-path in the type hierarchy in KGs [18]. As the
example shown in Fig. 1, “Leonardo da Vinci” is associated with a type-path
“thing/person/artist/painter”. Apparently, fine-grained types (e.g., Painter and
Artist) make more sense in data mining than coarse-grained types (e.g., Person)
since they provide us with more specific semantic information [22]. Therefore, the
more fine-grained the types are, the more instrumental they would be in many of
the KG-based tasks, such as knowledge base completion [5], entity linking [12],
relation extraction [13], and question answering [25].

Plenty of work has been done on fine-grained entity typing. While traditional
information extraction based approaches focus on extracting type information
for entities from external text resource [3,14,26], in recent years, more and more
work tend to infer missing entity types for entities based on KGs’ internal infor-
mation. The existing work on KG-based fine-grained entity typing mainly relies
on KG embedding for entity typing, i.e., the entities are first embedded based on
information in KGs including relations, continuous attribute values and descrip-
tions etc., and then classified into different semantic types according to their
embedded results. However, although the TransE [2] and its variants [10,11,21]
are widely applied to many KG-relevant applications, they are helpless to those
entities having sparse relations with other entities. Some work also infers miss-
ing types for entities according to the embedding results of entities based on
their text descriptions [16]. But text descriptions are not always in high-quality.
Recent work inputs the relations of entities and continuous attributes into a
multi-layer perceptron to train the representation of entities for entity typ-
ing and achieves state-of-the-art results [8]. However, without dense enough
relations among entities for embedding learning, they are difficult to achieve
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Table 1. Percentage of Entities having Sparse Relations (1, 2, or 3) with Other Entities,
and the Average Number of Triples with them on DBpedia, CN-DBpedia and Yago3

0 Relation 1 Relation 2 Relation 3 Relation

DBpedia 5% 3.5 2% 3.9 7% 5.1 12% 6.3

CN-DBpedia 11% 4.3 6% 4.7 5% 5.3 9% 6.1

Yogo3 7% 3.8 3% 4.4 6% 5.6 10% 6.4

desirable results. In practice, there are a large proportion of entities having very
sparse relations with other entities in KGs. As listed in Table 1, there are more
than 20% entities having no more than 3 relational triples with other entities on
DBpedia, CN-DBpedia, and Yogo3. On the other hand, the average number of
triples for such entities are not that small, which can also be observed in Table 1.
While some of these triples are just attribute triples describing an attribute and
corresponding attribute value of an entity, other triples are “unlinked” relational
triples, which have their tail entity mentions unlinked to their corresponding KG
entities.

To address fine-grained entity typing for relation-sparsity entities in KGs, this
paper proposes a novel KG embedding model based on attributes and attribute
values of entities. Particularly, this KG embedding model maps all the attributes
and types into the same vector space in a TransE-like way, where “unlinked”
relational triples are also taken as attribute triples. In this model, attributes are
granted with different weights according to a selective attention mechanism [7],
while attribute values could be trained as bias vectors from attribute vectors
to type vectors. Based on this KG embedding model, we perform entity typing
from coarse-grained level to more fine-grained level hierarchically. Besides, it is
common to meet zero-shot attribute values that never appear in the training
set in the entity typing process. To handle these special cases, we also design
a similarity measurement to find a set of closest attribute values to denote the
zero-shot one, such that the robustness of our model could be further improved.

We summarize our contributions as follows:

– We propose a new KG embedding model based on attributes and attribute
values, which is particularly designed for fine-grained entity typing to relation-
sparsity entities in KGs.

– Based on this embedding model, we then propose to perform entity typing
from coarse-grained level to more fine-grained level hierarchically.

– We design an algorithm to handle the entities with untrained (zero-shot)
triple tails to ensure the robustness of our model.

We use two datasets from real-world KGs for experimental study. Our exper-
iments performed on these two KGs show that our approach is superior to the
most advanced models in most cases.

Roadmap. The rest of the paper is organized as follows: We cover the related
work in Sect. 2, and then formulate the problem in Sect. 3. After present our
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approach in Sect. 4, we report our empirical study in Sect. 5. We finally conclude
in Sect. 6.

2 Related Work

Entity typing is a long-standing problem in the Knowledge Graph (KG) construc-
tion research field. In this section, we first introduce the traditional solutions
using external textual semantic information, and then cover the mainstream
methods on entity typing within KGs.

2.1 Entity Typing with Texts

The goal of entity typing is to give entities more specific types after they have
been recognized from text. As the number of types and the complexity of the
problem increases, researchers try many ways to organize hierarchical infor-
mation of types [26]. In recent work, Choi et al. [3] constructs an ultra-fine-
grained dataset with 10,201 types at the most fine granularity. Based on the
same dataset, Federico et al. [14] map all types onto a sphere space and train a
transpose matrix to obtain the types of entities. This work achieve the state-of-
art results in entity typing with texts. However, the information used for entity
typing is usually about the sentences themselves, so the performance of entity
typing in fine granularity is still unsatisfactory.

2.2 Entity Typing in KGs

The classification of entities KG becomes a classical problem that refers to KG
completion. In KG completion, KG embedding is often used to solve such prob-
lems. For example, TransE [2], which is the basic of all KG embedding methods,
trains vector expressions of entities and relationships based on relations between
entities. In TransE, relations are trained as transitions from head entities to tail
entities, which can be expressed as h + r = t. Since then, various KG embed-
ding methods focus on how to obtain a better representation of KG based on
the relations between entities, such as TransR [11], PTrans [10], TransH [21] and
so on.

Another kind of methods is to obtain the low-dimensional vector represen-
tations of entities semantics and then use the vectors to classify the entities.
These methods are based on various kinds information in KGs rather than just
relational triples. For example, Neelakantan and Chang [16] generate feature
vectors from the description of entities in KG. Xu et al. [22] adopt a multi-
labelled hierarchical classification method to assign Chinese entities of DBpedia
types according to attributes and category information. In recent work, Jin et
al. [8] comprehensively consider the relationship between entities and continuous
attribute values, and combine them with a multi-layer perceptron to obtain the
semantic vectors of entities.
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The above methods consider entity typing in a complete KG. Nevertheless,
there are many relation-sparsity entities in KGs during the actual construction
process. These relation-sparsity entities tend to have many triples with unsplit
and unlinked tails, so that the above methods may fail to address such triples.
Our approach is designed to solve the problem of entity typing in this case. We
take full use of discontinuous attribute values which mostly come from unsplit
and unlinked tails to ensure that the relation information in such tails is not
lost.

3 Problem Formulation

A typical KG consists of a number of facts, usually in the form of triples denoted
by (head, predicate, tail), where head is the subject entity and tail is either the
object entity or an attribute value of the subject entity. We call a triple as a
relational triple if the object of the triple is an entity and the predicate denotes
the relation between the two entities. And we call a triple as an attribute triple
if the predicate denotes an attribute of the entity [6].

Given a KG with a hierachical type tree such as the one shown in Fig. 1, the
task of fine-grained entity typing aims at finding fine-grained semantic types for
entities with missing type information in the KG, w.r.t. the given hierachical type
tree. The hierachical type tree reflects the hypernym-hyponym relations between
types, for example, “person” is the hypernym of “artist”. More formally, we give
the relevant definitions with fine-grained entity typing task as follows.

Definition 1 (Knowledge Graph). Knowledge graph KG = {E,RT,AT} is
defined as a set of entities E, their relation triples RT and their attribute triples
AT .

Definition 2 (Hierarchical Type Tree). Hierarchical type tree organizes
types in the form of a tree which provides hypernym-hyponym relations between
types. Formally, Hierarchical type tree Ttr = {TS, TR} contains the set of types
TS and the relations between types TR.

Definition 3 (Fine-grained Entity Typing). Given a knowledge graph
KG = {E,RT,AT} and a hierarchical type tree Ttr = {TS, TR}, Fine-grained
Entity Typing aims to find a path {t1, t2...tn} in Ttr for each entity in E, where
ti is the hypernym of ti−1.

Example 1. As shown in Fig. 1, hierarchical type tree is a tree which reflects
hypernym-hyponym relations between types, while knowledge graph is a col-
lection which contains entities like “Leonardo da Vinci” and their attributes and
relations between each other. The task of fine-grained entity typing is to find
a type path in hierarchical type tree for each entity in knowledge graph,
such as “thing/person/artist/painter” for “Leonardo da Vinci”.
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Fig. 2. Architecture of our approach

4 Our Approach

The architecture of our approach is given in Fig. 2. Our model mainly consists
of two modules: embedding layer and replacing layer. We obtain vector repre-
sentations of triples at the embedding layer which needs labeled entities and a
hierarchical type tree Ttr as input. The role of the replacing layer is to classify
the unlabeled entities based on the embedded results and handle the entities
with untrained (zero-shot) triple tails. In the following, we briefly introduce how
to build a proper hierarchical type tree and then present the embedding layer
and replacing layer respectively.

– Hierarchical Type Tree: Types are naturally hierarchical, we start with the
coarse-grained typing of entities, and then we gradually get more fine-grained
types. To this end, we construct a tree that can reflect the hypernym-hyponym
relationship of types at the semantic level which can be used to carry out hier-
archical classification.
Given a set of types denoted as TS, for each pair of type combination
<t1, t2> in TS, we calculate the possibility that t1, t2 have hypernym-
hyponym relationship according to the entity set of types t1 and t2:

Phyp(t1, t2) =

√
|ES(t1) ∩ ES(t2)|

|ES(t1)| × (1 − |ES(t1) ∩ ES(t2)|
|ES(t2)| ) (1)

where ES(t) is the set of entities of type t. This formula is proposed by Lenci
et al. [9], which calculates confidence based on the coincidence between the
sets of entities. If Phyp(t1, t2) > θ, we consider that t1 is the hypernym of
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t2, where θ is threshold value. The set of hypernym-hyponym relationships
between types is denoted as TR which is formulated as follows:

TR = {< t1, t2 > |t1, t2 ∈ Ts & Phyp(t1, t2) > θ} (2)

To ensure the accuracy of TR, we perform a manual filtering where each
hypernym-hyponym relationship in TR is checked by three people and
only those confirmed correct by at least two people would be kept. After
that, we also need to remove some redundant relationships to ensure that
the children of each node are at the same layer of the tree. For exam-
ple, if <“person”,“artist”>, <“artist”,“painter”> and <“person”,“painter”>
∈ TR, we remove <“person”,“painter”> from TR so that the children of node
“person” in Ttr are at the same layer, which means they are of the similar
granularity.

– Embedding Layer: The main task of the embedding layer is to construct
classifiers and train the vector representation of elements in triples and types.
To obtain the type path of the entity, we build several classifiers to identify
types of different granularities. Also, we propose to fully use discontinuous
attribute values, which are trained as bias vector in this layer. We give more
details in Sect. 4.1.

– Replacing Layer: The replacing layer will be triggered when unlabeled enti-
ties are classified by embedding results. This is because we often encounter
entities with untrained (zero-shot) triples which have no corresponding vector
representation. So we use replacing layer to handle such entities to ensure the
robustness of our model. More details could be found in Sect. 4.2.

4.1 Embedding Layer

The architecture of the embedded layer is shown in Fig. 3. There are two main
inputs to the embedded layer, one is the set of labeled entities (ESlabeled), and the
other is the hierarchical type tree Ttr. In Ttr, the coarser the type granularity is,
the closer it is to the root node. There are three coarse-grained types: “person”
(“Per”), “organization” (“Org”), and “location” (“Loc”). We start by training
a classifier to classify these three types, and we denote it as classifier1. Then
three classifiers are trained to classify the sub-types of “Per”, “Org” and “Loc”
respectively. For example, if “Per” has five sub-types including artist, officials...,
we train a classifier to classify entities which has been classified by classifier1
as “Per” into five more fine-grained types.

In each classifier, we first learn the low-dimensional vector representation of
each triple’s predicate and tail in embedding layer. After that, the representation
of each entity is calculated by the representation of its triples and should be
as close to the representation of entity’s type as possible. The validity of the
method of obtaining types by triples’ information has been proved by multiple
experiments [8]. But all of these approaches only consider predicate information
in triples, and they can only work when the tails of triples are entities which
have been linked. However, relation-sparsity entities have a small number of such
triple tails.
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Fig. 3. Architecture of embedding layer

As shown in Table 1, most relation-sparsity entities also have rich triples that
contain many undiscovered relations. These relations are mainly derived from the
tails of unsplit and unlinked triples, or from phrase tails that have not yet been
refined, and they will be treated as discontinuous attribute values. For example,
(“Leonardo da Vinci”, “born”, “14/15 April 1452.Republic of Florence”) can
be spilt into an attribute triple (“Leonardo da Vinci”, “birthday”, “14/15 April
1452”) and a relation triple (“Leonardo da Vinci”, “birthplace”, “Republic of
Florence”). The goal of our model is to make full use of discontinuous attribute
values in fine-grained entity typing.

1) Embedding with Predicates in Triples. In triples, predicates are usually
relation names or attribute names. These predicates themselves can reflect the
type information of the corresponding head entity. For example, “Leonardo da
Vinci” has an attribute: “bron”, which obviously tends to be the attribute of
entities whose type is “Per”. In previous work, SDType [17] proposed a method
to calculate the type probability distribution of entities based on their triples’
predicates, which indicates that the predicates of entities can indeed reflect the
type information of entities. In our approach, we map entities’ attribute/relation
name and type into the same vector space. Vector representations of entities
can be obtained by weighted summation of their attribute/relation vectors and
should be as close as possible to the entity’s type vector. For an entity in training
set, the embedded target can be represented as follows when considering only
the average weights:

|PS|∑
i=0

−→pi
|PS| =

−−→
type (3)
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Fig. 4. Example of bias vector Fig. 5. Training target

where PS means the set of predicates in entity’s triples and pi ∈ PS, type
means entity’s type. In the vector space that satisfies the above formula, the
more a predicate P is monopolized by a type T , the closer the

−→
P is to the

−→
T .

A predicate P being monopolized by a type T means if an entity’s triples have
predicate P , the entity’s type is mostly likely to T . As shown in Fig. 6, predicate
“born” exists in triples of entities whose type is “Per” in most cases, so

−−→
born is

close to
−−→
Per but far from

−−→
Loc and

−−→
Org.

2) Embedding with Triple Tails. If we just use predicates of triples to train
the entity representation, it does work well at coarse granularity. However, as the
granularity increases, it becomes difficult to identify the more accurate type of an
entity due to insufficient information. For example, “Leonardo da Vinci” has a
predicate “work”, which can help us know he is a “Per”. However, both entities
of type “musician” and entities of type “painter” have predicate “work”. We
could hardly know whether “Leonardo da Vinci” is a “painter” or a “musician”
simply by the predicate “work”, while the object of predicate “work” can help
us identify him as a “painter”.

So we consider training the tails of triples as bias vectors pointing to more
specific types, as shown in Fig. 4, the vector of predicate “work” is close both to
the vector of type “musician” and the vector of type “painter”. Apparently, when
the object of “work” is a painting like “Mona Lisa,” the entity is more likely to
be a “painter”, and when the object of “work” is a music like “Symphony No.
5 (Beethoven)” the entity is more likely to be a “musician”. So we train the
tails like “Mona Lisa” and “Symphony No. 5 (Beethoven)” to be bias vectors
pointing to more specific types. When considering the tails of triples, we can
obtain the type vector of each entity from its predicate vector plus the vector of
the corresponding triple tail. The training target and the example are shown in
Fig. 5 and Fig. 4 respectively. The formal expression is as follows:
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Fig. 6. “born” Fig. 7. “alias”

|PS|∑
i=0

(−→pi +
−→
ti )

|PS| = type (4)

where ti is the corresponding triple tail of predicate pi. For continuous attribute
values, we train them after discretizing them by clustering.
3) Getting Weights for Predicates. Each predicate is supposed to have
a different weight when judging the type. For example, “born” is a common
predicate that “Per”, “Org”, and “Loc” can have, whereas “alias” is usually only
reserved for “Per”. This is reflected in low-dimensional vector space where

−−→
born

is very close to
−−→
Per and

−−−→
alias is not particularly close to the vector of any type.

Figure 6 and Fig. 7 illustrate this phenomenon. Clearly “born” is more significant
and should have a higher weight. Based on this idea, we use a selective attention
mechanism to obtain the weight of the predicate, and the training objective is
defined as follows:

|PS|∑
i=0

eWeight(pi)(−→pi +
−→
ti )

|PS|∑
i=0

eWeight(pi)

=
−−→
type (5)

The weights of predicates, denoted by Weight(pi, TS), defines the variance of
the distances between −→pi and the vectors of each class.

Weight(pi, TS) =

|TS|∑
j=0

(∥∥∥−→pi − −−−→
typej

∥∥∥
2

− Avgdis(pi, TS)
)2

|TS| (6)

where TS means the set of types that the current classifier needs to distinguish
and typej ∈ TS. Avgdis(pi, TS) is the average distance between −→pi and the
vector of each type in TS:
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Avgdis(pi, TS) =

|TS|∑
j=0

∥∥∥−→pi − −−−→
typej

∥∥∥
2

|TS| (7)

During the process of training, negative samples are obtained by replacing
the types of positive samples. For example, the negative sample of (“Leonardo da
Vinci”,“painter”) can be (“Leonardo da Vinci”,“musician”). The loss function
for each positive sample is defined as follows:

l(e,type) =

∥∥∥∥∥∥∥∥∥

|PS|∑
i=0

eWeight(pi,TS)(−→pi +
−→
ti )

|PS|∑
i=0

eWeight(pi,TS)

− −−→
type

∥∥∥∥∥∥∥∥∥
2

(8)

For each positive sample (e, type) and the corresponding negative sample
(e, type′), where type′ is the error label after replacing. We use hinge loss to get
the loss of each sample. The hinge loss is defined as:

lhinge = max(0, l(e, type) − l(e, type′) + ξ) (9)

where ξ is the fixed margin. Finally, our loss function is defined as:

L =
∑
e∈ES

max(0, l(e, type) − l(e, type′) + ξ) (10)

where ES is the entity set in training.

4.2 Replacing Layer

In the real world, there are an infinite number of possible objects corresponding
to predicates in triples, and even the triple tails with the same semantic meaning
may have different but similar expressions. The training set cannot contain all
possible triple tails. In fact, we often encounter untrained tails during testing, so
we design a replacing layer to replace such tails with the closest trained tails. We
mainly adopt three kinds of similarity: gensim1 (Bag of Words), longest common
sub-sequence (LCS) and BERT-wwm [4]. The gensim similarity is defined as
follows:

Simgensim(s1, s2) =
|Bow(s1) ∩ Bow(s2)|2
|Bow(s1)| × |Bow(s2)| (11)

where Bow(s) means the “Bag of Words” of s. s1, s2 are two phrases used to
judge similarity. And the longest common sub-sequence (LCS) similarity is as
follows:

SimLCS(s1, s2) =
len(LCS(s1, s2))2

len(s1) × len(s2)
(12)

1 https://pypi.org/project/gensim/.

https://pypi.org/project/gensim/
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Table 2. Statistics of the datasets

Entities Types Predicates Rel.triples Attr.triples

Continuous Discontinuous

CN-DBpedia 198,546 175 2185 178,554 515,862 1,270,694

DBpeadia 300,000 214 1426 5,243,230 849,387 0

where LCS(s1, s2) means the longest common sub-sequence of s1 and s2 and
len(. . . ) means the number of characters in the phrase.

Here we use BERT-wwm [4] to get the vector presentations of phrases and
then calculate the similarity by cosine function.

Based on the above three similarities, we define the final similarity as follows:

Sim = Simgensim + λ1 · SimLCS + λ2 · SimBERT−wwm (13)

λ1 and λ2 are weight parameters. The above formula expresses the semantic
similarity between phrases, triple tails with similar semantics should have similar
representation in the vector space in our model. So we use formula 13 to replace
untrained triple tails with tails that are already trained.

5 Experiments and Analysis

In this section, we first introduce our datasets and the metrics we use for evalua-
tion in Sect. 5.1 and then explain methods we compare with in Sect. 5.2. Finally,
we present the experimental results and analysis in Sect. 5.3.

5.1 Datasets and Experimental Setup

Datasets: We collect our data from CN-DBpedia2 and DBpedia3. The data in
CN-DBpedia is mainly collected from the inforbox if BaiduBaike which contains
many unsplit and unlinked relation triples. So, a large number of relation-sparsity
entities exist in this dataset, which is specifically used to test the performance
of our method on relation-sparsity entities. The DBpedia dataset is proposed
by Jin et al. [8], which is extracted from DBpedia. In this dataset, each entity
has rich relationships and continuous attribute values. As we can see in Table 2,
both datasets have about 200 fine-grained types, and the second dataset has a
much larger proportion of relational triples than the first one.

Metris: As for the evaluation metrics, we use Micro-averaged F1 (Mi-F1) and
Macro-averaged F1 (Ma-F1), which have been used in many fine-grained typing
systems [18,23,24].

2 http://kw.fudan.edu.cn/cndbpedia/intro/.
3 https://wiki.dbpedia.org.

http://kw.fudan.edu.cn/cndbpedia/intro/
https://wiki.dbpedia.org
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Parameter Settings: In our experiments, all predicate vectors are normalized:
‖−→pi‖2 = 1, and the length of bias vector is positioned to 1/6 of the length

of predicate vector:
∥∥∥−→

ti

∥∥∥
2

= 1/6. A batch of 500 samples is used to update
the model parameter per step with learning rate set as 0.002, training time is
limited to at most 200 epochs over the training set. And we set fixed margin in
loss function ξ = 1. In replacing layer, both λ1 and λ2 are chosen among{0.2,
0.4, 0.6, 0.8}, we found λ1 = 0.4 and λ2 = 0.8 achieve best performance.

5.2 Approaches for Comparison

In this section, we briefly introduce five comparative methods including
TransE [2], SDType [17] APE [8], our proposed Baseline Model and Final Model.

– The TransE method aims to learn representations of all entities and relations
in KGs. In TransE, the relation r in each relation triple: (h,r,t) can be con-
sidered as a translating from the head entity to the tail entity. By constantly
adjusting the vector representation of h, r and t, we wish (h+r) is equal to t as
much as possible, that is, h + r = t. This method is mainly used for prediction
of tail entities, but vector representation of entities can also be used for entity
typing. So, we input the entity representation obtained by TransE into a lin-
ear classifier for entity typing. For CN-DBpedia, due to the lack of relations,
we link some tail entities to ensure that TransE could train normally.

– The SDType method is a heuristic model which counts on the distribution of
head entities’ types and tail entities’ types for each predicate, respectively.
For unlabeled entity, SDType calculates the probability that it is of each type
based on these distribution.

– The APE method inputs the one-hot encoding of the entity’s owned pred-
icates and the vector of the continuous attribute values into a multi-layer
perceptron. After that it uses a softmax layer to get the entity’s type at the
last layer of the network.

– The Baseline1 considers only the predicates themself without the triple tails
information, and each predicate has an average weight when the weighted
sum is taken.

– The Baseline2 does not replace untrained (zero-shot) triple tails by the replac-
ing layer. It assigns vectors of untrained tails to the average of vectors of
trained tails which are owned by untrained tails corresponding predicates.

– The Final Model (TransCate) adds the triple tails information to the loss
function and uses the selective attention mechanism to obtain the predicates’
weight. Besides, replacing layer is introduced to handle the untrained triple
tails.
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Table 3. The overall of the comparsion results

Approaches CN-DBpedia DBpeadia

Mi-F1 Ma-F1 Mi-F1 Ma-F1

TransE 0.375 0.261 0.519 0.512

SDType 0.558 0.447 0.577 0.569

APE 0.732 0.597 0.657 0.649

Baseline1 0.638 0.493 0.628 0.621

Baseline2 0.723 0.517 0.654 0.646

TransCate 0.761 0.563 0.662 0.651

5.3 Experimental Results

1) Overall Comparsion Results. We assign 40% of the entities in each dataset
to test the performance of the entity typing. Each dataset is subjected to multiple
experiments to get the average result except SDType as it relies on probability
distribution and the effect of multiple experiments remained unchanged. As can
be seen from Table 3, our method has obtained the desired performance, with
a 3% improvement over the best methods of the past in CN-DBpedia since
CN-DBpedia contains a large number of relation-sparsity entities. For DBpedia,
our method only has tiny improvement. It is worth mentioning that TransE’s
performance is poor on both datasets. We notice that its performance is close to
SDType, but much lower than other methods in most cases. The main reason
for this is that TransE is designed for tail entity prediction rather than entity
typing.

Analysis: In CN-DBpedia, the performance of TransE is much lower than that
of other methods due to the sparse relations, and the performance of the base-
line1 is lower than that of APE because it only uses predicate information of
triples, while APE also use the information of continuous attribute values in
triples. When our method uses triple tails information, the results are the best
among all the comparison methods. In DBpedia, as the relations become denser,
the performance of other methods approaches that of ours. The use of the replac-
ing layer improves performance in CN-DBpedia more than it does in DBpedia
because the test set of CN-DBpedia has more untrained triple tails.
2) The Effectiveness of Tails and Attention. We also evaluate the results
for different granularity types when our approach use predicates information in
triples, tails information and attention mechanisms. Table 4 shows the experi-
mental results on CN-DBpedia. We observe that even simple typing with pred-
icates can achieve good results when judging only three types: person, orga-
nization and location. However, the improvement brought by triple tails and
attention mechanism becomes larger and larger as the granularity increases.
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Table 4. The effectiveness of tails and attention

3 types 23 types 149 types

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Predicates 0.982 0.961 0.829 0.737 0.638 0.493

P+Tails 0.986 0.970 0.887 0.804 0.744 0.545

P+T+Attentions 0.991 0.983 0.904 0.826 0.761 0.563

6 Conclusions and Future Work

In this paper, we propose a new KG embedding model based on attributes and
attribute values, which is particularly designed for fine-grained entity typing
to relation-sparsity entities in KGs. Based on this KG embedding model, we
perform entity typing from coarse-grained level to more fine-grained level hier-
archically. We also design an algorithm to handle the entities with untrained
(zero-shot) triple tails to ensure the robustness of our model. Our experiments
performed on two real-world KGs show that our approach is superior to the most
advanced models in most cases.

Future work looks forward to finding a better replacing algorithm for the
untrained triple tails. In addition, we would like to consider the description text
of the entity as an important information for better entity typing performance
to triple-sparsity entities.
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