
E2-NVM: A Memory-Aware Write Scheme to Improve Energy
Efficiency and Write Endurance of NVMs using Variational

Autoencoders
Saeed Kargar

University of California, Santa Cruz
skargar@ucsc.edu

Binbin Gu
University of California, Irvine

binbing@uci.edu

Sangeetha Abdu Jyothi
University of California, Irvine and VMware Research

sangeetha.aj@uci.edu

Faisal Nawab
University of California, Irvine

nawabf@uci.edu

ABSTRACT
We introduce E2-NVM, a software-level memory-aware storage
layer to improve the Energy efficiency and write Endurance
(E2) of NVMs. E2-NVM employs a Variational Autoencoder
(VAE) based design to direct the write operations judiciously
to the memory segments that minimize bit flips. E2-NVM can
be augmented with existing indexing solutions. E2-NVM can
also be combined with prior hardware-based solutions to further
improve efficiency. We performed real evaluations on an Optane
memory device that show that E2-NVM can achieve up to 56%
reduction in energy consumption.

1 INTRODUCTION
NVM technologies suffer from two main challenges that needs to
be taken into consideration: (1) NVM write operations demand
a significant amount of current and power. For flipping an
individual bit in PCM, for instance, it requires around 50 pJ/b.
This is significant when compared to writing a whole DRAMpage
which needs only 1 pJ/b [6]. (2) NVM has low write endurance
(the number of writes that can be applied to a segment of storage
media before it becomes unreliable.) NVM write endurance is
on the order of 108–109 writes, which is significantly lower
than DRAM write endurance which is on the order of 1015
writes [27, 29, 39].

To overcome the energy consumption and write endurance
problems in NVM, two approaches were developed. The
first approach develops hardware-based write optimization
techniques [1, 10, 15, 23, 45] that are mostly based on a Read-
Before-Write (RBW) pattern [51]. In RBW, a write operation𝑤 to a
memory location 𝑥 is always preceded with a read of 𝑥 . The value
to be written by𝑤 is compared with the old content of 𝑥 , and only
the bits that are different are written. This reduces the number
of flipped bits, which reduces energy consumption and increases
write endurance [51]. The second approach tackles the problem
of energy consumption and write endurance by minimizing
write amplification [4, 9, 25, 33, 44, 53]. However, these methods
conflate the problem of energy efficiency and write endurance
with the problem of write amplification. Although in many cases
a technique that leads to reducing write amplification has the
side-effect of increasing energy efficiency and write endurance,
this is not always the case as shown by prior work [6, 26, 27] and
our evaluations in this paper.

In this work, we identify a crucial opportunity to increase
energy efficiency and write endurance that prior solutions
overlooked—memory-awareness. Prior methods pick the memory
location for a write operation arbitrarily (new data items select an

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

arbitrary location inmemory, and updates to data items overwrite
the previously-chosen location.) This misses the opportunity to
judiciously pick a memory location that is similar to the value
to be written (in terms of their hamming distance), which can
reduce the number of updated bits. Reducing the number of bit
flips increases write endurance and reduces power consumption
in many NVM technologies [6, 22, 26, 47, 52].

We present a software-level memory-aware solution, E2-NVM.
E2-NVM is implemented in software and does not suffer from the
compute and space constraints of solutions implemented in the
memory controller. E2-NVM is implemented as a storage layer
that maps free memory locations according to their hamming
distance. Incoming write operations are then intercepted, and
placed on a free memory location that is similar in terms of their
hamming distance. To perform this mapping, E2-NVM trains a
deep learning model using the free memory locations. The use
of deep learning is possible because E2-NVM is implemented in
software rather than in the memory controller. In the paper, we
present and discuss the challenges we faced in applying VAE to
this problem. This includes using an efficient model, which is a
combination of a VAE and a clustering model, to overcome the
limitations of traditional clustering methods when they have to
deal with high dimensional data. We also tackle the problem of
supporting memory segments of variable sizes. We propose a
data padding strategy that allows using the same VAE model for
memory segments with different sizes.

2 BACKGROUND
2.1 System Model
The systemmodel consists of hardware and software components.
E2-NVM does not require any special hardware. We consider
a hybrid DRAM-NVM architecture, where both devices are
placed on the memory bus. The NVM device, in addition to the
memory segments, contains a memory controller that intercepts
all operations to NVM. The memory controller may utilize a
wear leveling solution that swaps memory segments periodically.
The details of wear leveling methods are typically proprietary.
However, prior work has indicated that wear leveling approaches
perform a memory segment swap every 𝜓 write operations.
Typically, the value of𝜓 is in the order of 10s of writes [22]. E2-
NVM is a storage layer that sits between software applications
(such as data stores) and the hardware components.

2.2 Motivation: Software-Level Bit Flipping
Reduction

With the advent of Compute Express Link (CXL), new capabilities
such as memory pooling were defined that will broaden the
deployment of production CXL solutions. CXL is an open-
source multi-protocol method that specifies how to deliver high-
performance interconnects between different CPUs, GPUs, TPUs

Figure 1: The latency and memory energy consumption on a real
Intel Optane memory device [29].

Figure 2: The average number of bit updates for different wear-
leveling techniques when swapping period changes.

and memory device types. This means that CXL-enabled non-
volatile memories will be able to work with CPUs other than
Intel’s, which will enable much bigger pools of this non-volatile
memories compared to the largest DRAM cache in commercial
storage, which is a couple of TB. CXL makes it especially possible
for data centers, IoTs and mobile devices to deploy non-volatile
memory in their systems [48].

To see how bit flip reduction affects the latency and energy
consumption of a NVM device, we have conducted an experiment
on a real Optane memory device, which is one type of PCM, using
the Persistent Memory Development Kit (PMDK) 1, formerly
known as NVML. In this test, first, we allocate a contiguous
region of N Optane blocks of 256B. During each “round” of the
experiment, we first initialize all the blocks with random data,
and then update the blocks with new data with content that is
x% different than the data that is already in the block (hamming
distance). We use PMDK’s transactions to persist writes. We
measure the latency and energy consumption for each round.
Figure 1 shows that by overwriting similar content, which needs
less bit flipping, we can achieve an average energy savings of up
to 56%. The experiments also show the potential of improving
write latency which is important as it can offset some of the
overhead that is incurred by software-level solutions that aim
to reduce bit flips. This improvement in latency is due to the
ability to write fewer cache lines when the cache line to be
written is identical to the one in the memory segment. In this
case, the memory controller avoids writing them, which reduces
the average latency [26].

This potential of reducing bit flips using software-level
solutions overcomes two challenges that faced hardware
solutions: The first is that to be deployed on hardware, algorithms
need to be small and simplistic—in terms of computation power
and memory space—to fit in the memory controller. The second

1Persistent Memory Development Kit https://pmem.io/pmdk/.

is that developing hardware-based methods is not accessible to
researchers. This is evident by how most storage solutions for
wear leveling and bit flip reduction are proprietary and requires
manufacturing new hardware to implement a new solution.
It is worth noting that although we provided our results on
Optane, which is one type of PCM, E2-NVM is applicable to
other phase change material-based technologies, such as phase-
change random access memory (PRAM) and Resistive RAM
(RRAM), which can benefit from bit flip reduction. Since E2-
NVM’s main focus is to improve energy consumption of the
system, our proposed method can be especially attractive to the
applications that use low power PCM devices due to relying on
energy-harvesting systems or batteries [7], such as the Internet
of Things (IoT) and mobile devices.

Figure 2 shows how E2-NVM can achieve its goals despite the
interference and segment swapping from the underlying memory
controller. We used Amazon Access Samples Data Set [40], which
is described in the evaluation section. We also show how E2-
NVM compare with prior hardware-based bit flip-reduction
techniques that we describe in more detail in the evaluation
section [10, 23, 26, 36, 51]. The figure shows the performance of
E2-NVM while varying the frequency,𝜓 , of the underlying wear-
leveling swapping of memory segments (this experiment utilizes
an emulation of thememory controller as such parameters cannot
be manipulated on typical real memory controllers.) When the
frequency 𝜓 is 1, then the swap is performed for every write
operation, whichmeans that E2-NVM judicious memory segment
choice is swapped. This leads to not observing the benefits of
the software-level approach. (A low𝜓 value is also not good for
hardware-based methods because it means that more bit flips are
incurred due to frequent swapping.) As we increase𝜓 to normal
levels, E2-NVM shows that software-level approaches are capable
of significant improvement.

2.3 Related Work
Integrating NVMs into existing computer systems requires to
develop new NVM-friendly data structures [43] that focus on
special properties such as reducingwrite amplification [25], being
lock-free [41, 42], reducing bit flips [10, 15, 28], and so on. The
research is broadly classified into three main classes:

Bit flip reduction. One of the most prevalent techniques in
this category is called “Read-Before-Write” (RBW) [10, 15, 23]. For
example, Flip-n-Write (FNW) [10] compares the current content
of the memory location (the old data) with the content to-be-
written (the new data). This enables FNW to decide whether
to write the new data in its original format or to flip it before
writing it if that leads to reducing bit flips. Data Content-aware
(DATACON) [47], which is implemented inside the memory
controller, reduces the latency and energy of PCM writes by
redirecting the write requests to a new physical address within
memory to overwrite memory locations containing all-zeros
or all-ones depending on the content of the incoming writes.
Hamming-Tree [28] is another method that minimizes bit flips
through organizing memory contents based on their hamming
distance on a tree data structure. Predict and Write (PNW) [26]
uses a simple clustering model to find memory segments that
minimize bit flips.

Reducing write amplification. Techniques for write
amplification reduction include delaying the consolidation of
writes [25, 33], caching [4, 9, 44], and others [34, 53]. With the
introduction of NVM to the memory hierarchy, it turns out that
reducing write amplification can have the positive side-effect of
improving energy efficiency and write endurance since less data
is written. Nevertheless, reducing write amplification does not
enable reaching the full potential of such improvements that can

https://pmem.io/pmdk/

be attained with bit flip reduction [6, 26]. This is because—unlike
flash—NVM cells are written individually, which means that the
number of flipped bits is more critical to optimize than the total
number of written words [6].

Wear leveling. Wear leveling [10, 15, 22, 46, 47, 52] extends
the lifetime of NVM devices by distributing the writes evenly
across the memory blocks of NVM so that no hot area reaches its
maximum lifespan [8]. This, however, means that wear leveling
does not reduce the actual number of bit flips—it only distributes
them across the device. The benefits of reducing bit flips in terms
of energy efficiency would not be observed with wear leveling. In
fact, wear leveling may introduce more bit flips—and thus more
energy consumption—due to the swap operation.

3 E2-NVM DESIGN
3.1 Variational Autoencoder (VAE)
The representation ability of dimensionality reduction techniques
like PCA is limited at scale. Many applications from power
systems to health care to storage systems and database systems
use deep learning as a feasible alternative that can provide
low dimensional learned features with lower preprocessing and
training delay while preserving intrinsic local structure in data [3,
17, 20, 50]. In this work, we choose Variational Autoencoders
as our model of choice for several reasons: high representation
ability, fast training, and the ability to jointly perform clustering
and model training [20]. VAE can be considered as a generative
variant of Auto Encoder (AE), as it enforces the latent code of
AE to follow a predefined distribution [38].

Our VAE consists of an encoder, a decoder, and a loss function.
The encoder part is a deep neural network with weights and
biases \ , which takes a memory segment x as input and encodes
it into a latent (hidden) representation space z, which has much
less features/dimensions than x. The main responsibility of the
encoder is to learn an efficient compression of the data x into
this lower-dimensional space z. The decoder part is another
deep neural network with weights and biases 𝜙 , which takes
the latent representation z produced by the encoder and outputs
the parameters to the probability distribution of the data. Finally,
since the loss function of the VAE is the negative log-likelihood
with a regulizer, the total loss is

∑𝑁
𝑖=1 𝑙𝑖 for the total data points,

where the loss function 𝑙𝑖 for a single data point 𝑥𝑖 is calculated
as bellow:
𝑙𝑖 (\, 𝜙) = −E𝑧∼𝑞\ (𝑧 |𝑥𝑖) [log 𝑝𝜙 (𝑥𝑖 |𝑧)] + KL(𝑞\ (𝑧 |𝑥𝑖) | |𝑝 (𝑧))

where 𝑞\ (𝑧 |𝑥𝑖) and 𝑝𝜙 (𝑥𝑖 |𝑧) denote the encoder’s and decoder’s
distributions, respectively. The first term is the reconstruction
loss (expected negative log-likelihood of the 𝑖th data point). The
expectation is taken with respect to the encoder’s distribution
over the representations. This is the reason that makes the
decoder learn to reconstruct the data. The second term is the
Kullback-Leibler divergence between the encoder’s distribution
𝑞\ (𝑧 | 𝑥)𝑞 and 𝑝 (𝑧), which measures how p is close to q. It is
worth noting that, in the VAEs, 𝑝 is specified as a standard normal
distribution with mean 0 and variance 1 [2].

3.2 E2-NVM Design
At the core of E2-NVM is a VAE, an unsupervised ML model,
which in combination with K-means clustering maps memory
locations into clusters based on the similarity of their content. The
VAE-based clustering model is trained/re-trained based on the
bit-wise contents of the available memory locations/segments
on PCM, and learns the existing data distribution in memory.
E2-NVM integrates the VAE’s reconstruction loss and the K-
means clustering loss to jointly train cluster label assignment

NVM

DRAM
DRAM

K-
m

ea
ns

cl

us
te

rin
g

Encoder
DRAM

Cls Addr

1 0xA

2 0xB

… …

1

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7 Bucket 8

2

3 4

1

2
3

4

Put

Delete

Figure 3: Memory layout of a E2-NVM-based key-value store.

and learning of suitable features for clustering. In other words, E2-
NVM jointly optimizes (a) reduction of high-dimensional input
to low-dimensional latent space representation and (b) clustering
in the low-dimensional latent space. E2-NVM can scale to much
larger input sizes compared to prior work since clustering is
performed on the latent space.

Each memory location is encoded as a vector of bits, each
of which is used as a feature/dimension. The entire data
zone/memory pool can be encoded as a 2D tensor (that is, an
array of vectors) of shape (n, m), where the first axis (n) represents
the samples (old data) and the second axis (m) represents the
features. The model takes the input of size m and downsizes it
to a low-dimensional latent space (e.g., size 10) and feeds it to
the K-means clustering model. E2-NVM also employs a padding
strategy (§4) to accommodate data items of arbitrary size.

3.3 E2-NVM Integration and Operations
We present a persistent key/value store that is built on a hybrid
DRAM-NVM memory using E2-NVM (Figure 3.)

3.3.1 System Model. The components of the system are:
E2-NVM. This component includes the VAE and k-means

clustering models. This component is trained using the data on
NVM to enable creating k clusters based on hamming distance
similarity. After training, only the encoder part of the VAE and
the K-means clustering models are needed. In operation, this
component is used to predict the cluster of a given data object.

Cluster-to-memory dynamic address pool. This
component is responsible for tracking the free memory segments
that belong to each cluster. It is implemented as a simple
mapping data structure where the key is the cluster id and the
value is a list of all the free memory addresses that belong to
the cluster. This map is initially populated in the initialization
phase when E2-NVM is trained. The population is performed
by running the prediction algorithm using E2-NVM on the
free memory addresses. During normal operation, the mapping
structure is mutated in response to operations. A PUT operation
would result in removing the chosen address from the pool and
the DELETE operation results in adding (recycling) the deleted
memory address back to the pool. It is worth noting that, when a
write request comes to the system and its corresponding cluster
is found, E2-NVM returns the first available address in the
cluster. Although searching within clusters can result in finding
the perfect matches, we do not do that since all the similar
addresses in terms of their hamming distance are grouped into
one cluster. So, we just take the first available address in the
cluster knowing that it will have a very similar content to the
request. Our evaluation shows that this design decision allows
good bit flip reduction even without having to search for the
ideal address within a cluster.

The storage overhead of the dynamic address pool is
proportional to the number of memory segments (or buckets)
in the memory pool. Given a specific memory pool size,

for large memory segments, the size of the table does not
grow significantly. For small values, however, the number of
addresses that needs to be stored per memory segment can grow
substantially. To limit the table size, we have two options: (1)
Setting a fixed number of entries in the table, so the size of the
table cannot not grow tomore than a specificmaximum threshold.
(2) Depending on the size of the memory pool, choosing the size
of the memory segments in a way that while limiting the size
of the table within a specific threshold, we achieve the expected
energy performance. To find the most efficient segment size for a
specific size memory pool, we have conducted some tests, which
are discussed in section 4.1.4.

Data index. This is the component that corresponds to the
application. In this case, it is a key-value store. This indexing
component maps each key to the memory location that contains
its value in NVM.

NVMstorage.This component represents the NVMpersistent
storage used to store data for the key-value store. The storage is
divided into fixed-sized memory segments.

3.3.2 Data operations. Key-value operations can be divided
into operations that write data (PUT and UPDATE), delete data
(DELETE), and read data (GET and SCAN). Each one of these three
types is implemented via an algorithm that would potentially
mutate the state of the four components in Figure 3.

Write operation algorithm. Algorithm 1 illustrates the
pseudo-code of the write operation under the E2-NVM scheme
(shown by the green arrows in Figure 3). To locate the appropriate
memory location for an incoming key/value write, i.e., new PUT
or UPDATE operations, the input data is first processed by E2-
NVM’s encoder (step 1). In E2-NVM, the input data is transformed
to the latent space representation using the VAE encoder. Then,
using K-means clustering, the low-dimensional representation is
mapped to the cluster that is closest to the value-to-be-written
in terms of hamming distance (line 1 of the algorithm). Then, the

Algorithm 1: Write operation
// D’ and D: old and new (key,value)
// DAP: Cluster to Memory Dynamic
Address Pool

Write (D: (key,value)){
1: E = E2-NVM-model.predict(D); //predict

the entry
2: A = DAP.get(E);//get the address
3: D’= Read(A); //old (key,value)
4: DAP.remove(A) //remove the address from

DAP
5: for each bit in {D} and {D’}
6: if they differ, update memory bit
7: RB-Tree.put(D, A) //update the index}

Algorithm 2: DELETE operation
// D’: old key
// DAP: Dynamic Address Pool
// RB-Tree: Red-Black Tree
Delete (D’: key){

1: A = RB-Tree.get(D’); //get the address
2: Reset-Flag-Bit(A);//delete
3: E = E2-NVM-model.predict(Read(A));

//predict the entry
4: DAP.update(A:address, E:entry);//add

the address back to DAP}

chosen cluster is passed to the dynamic address pool (step 2 in
the figure and line 2 in the algorithm). The dynamic address pool
chooses a memory segment from the cluster and assigns it to
the write operation. After removing the address from DAP (line
4), the write operation is applied to the chosen address in NVM
(step 3 and lines 5 and 6). Finally, an index entry is added to the
application’s data index (step 4 and line 7).

DELETE operation algorithm. Algorithm 2 illustrates the
delete operation (shown by the red arrows in Figure 3). To
perform a DELETE operation, the key is first sent to the tree
to find the item’s location in the key-value store in NVM (step 1,
line1). The associated entry is then deleted from the key-value
store by resetting the associated flag bit (step 2, line 2). We recycle
the recently freed address back to the free list; the address (and its
content) is sent through the encoder and then K-means clustering
to find a suitable cluster (step 3, line 3). Then, the memory address
is added to the corresponding cluster in the dynamic address pool
so it can be used for future operations (step 4, line4).

Read operation algorithm. The GET operation is sent
through the data indexing tree to find its location in NVM storage.

SCAN operation algorithm. Similar to GET operations, a
SCAN operation is directed to the indexing data structure to find
the range of key-value pairs to be read and returned to the user.

3.4 E2-NVM benefits
VAE-based clustering employed by E2-NVM offers several
benefits over prior memory-aware techniques: lower training
time, higher accuracy, and better scalability. To demonstrate
the benefits of E2-NVM, in Figure 4, we compare E2-NVM with
two methods: K-means clustering and K-means clustering in
combination with PCA as employed by a recent memory-aware
clustering method PNW [26]. In the comparison, we use the
MNIST dataset. We measure two key metrics of performance,
latency and number of bit flips.

We train the clustering models on NVIDIA Tesla K80 GPU. We
group the incoming data of different sizes into 20 clusters. The
size of the input data is 70, 000 and the number of features or the
latent space representation is varied from 32 to 16384. Figure 4
shows that when the number of features—here the number of
bits—increases beyond a couple of thousands, pre-processing
latency of K-means clustering is extremely high. The results
show that using K-means clustering alone (without PCA) is not
a feasible choice for item sizes of kilobytes or more since the
pre-processing time goes up exponentially with the increase in
the number of features (the number of bits). For large data sizes,
the second mode (PCA + K-means) is the only viable choice
under PNW due to latency constraints. However, due to loss of
information arising from dimensionality reduction with PCA,
clustering efficiency is affected. Hence, the number of bit flips
increases when moving from K-means to K-means+PCA.

Figure 4 also presents the results for the VAE-based clustering
model of E2-NVM. This model needs significantly less time
than PNW for training, which includes both VAE and K-means
clustering training. This is because the VAE can decrease the
dimensionality from tens of thousands to hundreds very fast
while also minimizing data loss. E2-NVMminimizes both latency
and the number of bit flips significantly. This enables E2-NVM
to support memory-awareness for data with larger sizes in the
order of kilo to megabytes.

4 THE PADDING STRATEGY
4.1 Padding Strategies
Overview. In machine learning methods, the input size needs
to be defined when the model is created. To support inputs of

Figure 4: Comparison of E2-NVM with PNW (K-means alone and
K-means+PCA) in terms of the number of bit flips and latency.

Table 1: An example of a PCM with 12 memory segments.

Cluster Index Content

0

0 [0, 0, 1, 1, 1, 1, 0, 1]
1 [0, 0, 1, 0, 1, 1, 0, 0]
2 [0, 0, 1, 1, 1, 1, 0, 0]
3 [0, 0, 1, 1, 1, 0, 0, 0]

1

4 [1, 0, 0, 0, 1, 0, 1, 1]
5 [0, 0, 0, 0, 1, 0, 1, 1]
6 [0, 0, 0, 0, 1, 1, 1, 1]
7 [0, 0, 0, 0, 1, 0, 1, 0]

2

8 [1, 0, 1, 1, 0, 0, 0, 0]
9 [0, 1, 1, 1, 0, 0, 1, 0]
10 [1, 1, 1, 1, 0, 0, 0, 0]
11 [1, 1, 0, 1, 0, 0, 0, 0]

various sizes, we propose a padding strategy. In this strategy,
first, our deep learning model is trained on fixed-sized features,
for instance 𝑤 , like the other deep learning models. When the
model is ready, it can serve input data with size𝑤 . But, for input
data with a different size, 𝑝 , which is smaller than𝑤 , we need to
transform it into an item with size 𝑤 . To do that, in this paper,
we use padding, which is adding 𝑞=𝑤-𝑝 bits to the item to fit
the input layer of our DL model. The ultimate goal is to pad
the inputs of smaller sizes in such a way that it ends up in the
cluster with the most similar items, which means minimizing the
number of bit flips. It is worth noting that the padded part with
size 𝑞 is not a part of the main data and is added to the data just
for clustering purposes. Only the actual data of size 𝑝 is written
to the target memory and the remaining 𝑞 bits are ignored (not
written to storage). Figure 5 shows an example of E2-NVM’s
different padding strategies on an input data d1:[0,0,0,1].

Challenges. The padding strategy decides (a) where the
padded bits should be placed relative to the original input
data, and (b) what bits to use in padding. The padding strategy
influences the accuracy of detection and consequently finding a
suitable memory segment. However, there is a trade-off between
the complexity of the padding strategy and the effect on the
accuracy of the deep learning model. In the remainder of this
section, we discuss a number of strategies (see Figure 5) in the
spectrum of this trade-off.

Padding location. The location of the padded bits can be one
of the followings: (i) padding bits before the input data (beginning-
padding), (ii) padding bits after the input data (end-padding), or
(iii) padding bits are split, with one half before the input data and
the other half after the input data (middle-padding).

Input [0, 0, 0, 1]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c Beginning Padding: [?, ?, ?, ?, 0, 0, 0, 1]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 0,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

[1, 1, 0, 1,
0, 0, 0, 1]

[0, 1, 0, 0,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

[0, 0, 1, 1,
0, 0, 0, 1]

[1, 1, 1, 1,
0, 0, 0, 1]

Pred Cls [1] [2] [2] [1] [2] [0] [2]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c Middle Padding: [0, 0, ?, ?, ?, ?, 0, 1]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 0,
0, 0, 0, 1]

[0, 0, 1, 1,
1, 1, 0, 1]

[0, 0, 1, 0,
0, 1, 0, 1]

[0, 0, 1, 0,
0, 0, 0, 1]

[0, 0, 1, 1,
1, 1, 0, 1]

[0, 0, 0, 1,
1, 0, 0, 1]

[0, 0, 1, 0,
1, 1, 0, 1]

Pred Cls [1] [0] [0] [0] [0] [0] [0]

Pa
dd

in
g

Te
ch

ni
qu

e
Lo

c End Padding: [0, 0, 0, 1, ?, ?, ?, ?]

Ty
pe Universal data-agnostic Universal data-aware

Learned
Zero One Rand IB DB MB

Output [0, 0, 0, 1,
0, 0, 0, 0]

[0, 0, 0, 1,
1, 1, 1, 1]

[0, 0, 0, 1,
1, 1, 0, 1]

[0, 0, 0, 1,
1, 0, 0, 0]

[0, 0, 0, 1,
1, 1, 1, 1]

[0, 0, 0, 1,
1, 1, 0, 0]

[0, 0, 0, 1,
1, 0, 1, 1]

Pred Cls [2] [1] [0] [0] [1] [0] [1]

Figure 5: An example of applying E2-NVM’s different padding
strategies on an input data d1:[0,0,0,1] based on the memory pool
defined in Table 1.

4.1.1 Padding Type: Universal data-agnostic padding. The
simplest padding strategy—in terms of complexity and overhead—
is universal data-agnostic padding, where the padding bits
are generated given a simple fixed rule independent of data.
Specifically, there are three types that we experiment with: (i)
zero padding where all the padded bits are 0 bits, (ii) one padding
where all the padded bits are 1 bits, and (iii) random padding
where the padded bits are chosen randomly.

To illustrate how our padding strategy works, consider a
storage system that is using a PCM as its persistent memory with
a capacity of 12 equal sized memory segments, managed by a
free-list, which we refer to as the dynamic-address-pool (Table 1).
In this example E2-NVM groups these memory locations into 3
different clusters. Now, suppose that we have a new data object
d1: [0,0,0,1] that we want to insert into the PCM using universal
data-agnostic with beginning-padding location ([?,?,?,?,0,0,0,1]).
Using one padding, 8-4=4 bits are added before the input data
(in the question marks) to get [1,1,1,1,0,0,0,1]. Then, when it is
sent to the model, cluster 2 is predicted to be the best cluster and
one memory location is selected within this cluster (Figure 5).
Note that the leftmost 4 bits are not written to the memory since
they were added to the data to be able to utilize the deep learning
model. Although this padding type is very simple, our DL model
might not be utilized to its full potential since the padded bits
added to the input data might not reflect the existing distribution
in the memory content.

4.1.2 Padding Type: Universal data-aware padding. In this
scheme, we aim to find a padding strategy that chooses the
padding bits based on the content of the data objects in NVM or
the content of the input items. The intuition behind data-aware
padding strategies is that if the padding pattern matches patterns
in data, the VAE can perform more efficient clustering. For the
universal data-aware padding strategy, we propose three different
padding schemes: (i) input-based padding (IB), (ii) dataset-based
padding (DB), and (iii) memory-based padding (MB).

In input-based padding, the content of the padded part for an
incoming data item is determined based on the distribution of
ones and zeros in the input item. For instance, for the system
we described in this section, if it receives d1:[0,0,0,1], the padded
part will contain 1s and 0s with probability of 0.25 and 0.75,
respectively, which is the same as the probability of 1’s and 0’s
in d1. So, for the middle padding, the output format would be

[0,0,1,0,0,0,0,1], which results in cluster dataset-based padding
uses the distribution of 1’s and 0’s in all the items it has received
so far. For memory-based padding, we choose the probabilities
based on the content of the existing memory locations on NVM
that are going to be replaced by the new incoming items.

Although universal data-aware padding strategies generally
result in better clustering decisions compared to data-agnostic
padding, there are still some items that are directed to the wrong
clusters. This is because the distribution of 0’s and 1’s might not
reflect the best padding to be performed on the input item. The
next strategy aims to overcome this challenge.

4.1.3 Padding Type: Learned padding. The main shortcoming
of both data-aware and data-agnostic padding techniques is that
they do not always generate a padding that is tailored specifically
to both the input item as well as prior data, some of which that
are used in training the DLmodel. We overcome this by designing
a learning-based strategy, where we train a model that enables us
to predict the best padding strategy for a given input item which
takes into account all the existing data. The learned padding
model takes an incoming data item of arbitrary size as input and
generates the padding bits as output. The intuition behind this
padding strategy is that the padding model is trying to predict
the best padding strategy that will place the incoming item in
the right cluster.

To this aim, we utilize an Long Short-Term Memory (LSTM)
model to generate more meaningful padded data, so E2-NVM can
predict similar memory locations with higher accuracy, which in
turn improves the energy consumption of the system. Figure 6
shows the architecture of our proposed LSTM whose underlying
algorithm was developed by Hochreiter and Schmidhuber in
1997 [21]. This figure shows that the model has a hidden state
where it represents the state of the current timestamp, which is
known as short term memory. In addition to that LSTM also has
a cell state represented by 𝐶𝑡−1 and 𝐶𝑡 for previous and current
timestamp respectively (known as long term memory).

As it is shown in Figure 6, in this paper, E2-NVM utilizes an
LSTMwith a sliding window strategy which takes as input 64 bits
and predicts 8 bits in a single step. The window is slid by 8 bits
after each prediction to generate the required number of padded
bits. To illustrate the goal of our learned padding approach,
consider the same storage system in Table 1. For the sake of
simplicity, suppose that, in this example, our LSTM model takes
input size of 7 bits and predicts 1 bit at a time. Now, let’s further
assume that our system receives [1,0,1,1,0,0,0],[0,1,1,1,0,0,1],
[1,1,1,1,0,0,0], [1,0,0,0,1,0,1], [0,0,0,0,1,0,1], and [0,0,0,0,1,1,1].
Since the memory contents are 8 bits and E2-NVM works on
input sizes of 8 bits, we feed them to our following simple LSTM
model to make them 8 bits:

define model
model = Sequential ()
model.add(LSTM(10, input_shape =(1,7)))
model.add(Dense(1, activation='linear '))
compile model
model.compile(loss='mse', optimizer='adam')
model.fit(X, y, epochs =20, shuffle=False , verbose =0)
make predictions
yhat = model.predict(X, verbose =0)

As it is clear in Table 1, the best case scenario happens
when their eighths bits are predicted as 0, 0, 0, 1, 1, and 1,
which is congruent with the results of the LSTM model: [0.006],
[0.024], [-0.027], [1.056], [0.869], and [1.038]. As a result, all the
mentioned items are assigned to their correct clusters, which in
turn improves system’s energy efficiency.

Outputt-1 Outputt ...

[xi,…,xi+64]

[xi+64,…,xi+72]

[xi+8,…,xi+72]

[xi+72,…,xi+80]

Ct Ct+1
Ct-1

Input

State

Carry

Output

Ct

[xi+8x,…,xi+8(x+8)]

[xi+8(x+8),…,xi+8(x+9)]

...

...

Figure 6: The anatomy of the LSTM model used in E2-NVM.

Figure 7: E2-NVM’smemory and energy consumption for indexing
different numbers of memory segments.

4.1.4 Additional design considerations. As we discussed
before, E2-NVM is built on DRAM, and might need to index
a large portion of NVM, which usually comes at much bigger
sizes than DRAM. This means that if the memory segments that
we use in the system are small (for example 1KB) and we want to
index a NVM of size 1 TB, we will need to have E2-NVM index
around 1 billion memory segments, which takes a lot of space in
DRAM. To solve this problem, in E2-NVM, instead of indexing
the whole NVM device at the beginning, a dynamic incremental
approach can be adopted, which starts by indexing a portion of
the memory, and as time progresses, more addresses that were
not initially mapped can be added incrementally to DAP. Also,
free memory locations are dynamically added back (recycled) to
the free lists of DAP after DELETE operations.

Figure 7 illustrates the amount of memory that E2-NVM
uses for indexing different number of memory segments for the
PubMed data set [16]. The results show that although indexing
a smaller number of memory segments takes less space, it also
means that not only do we need to retrain the DL model more
frequently, but we will also have fewer choices to find the most
similar location for incoming writes, which results in increasing
the number of bit flips and energy consumption. From the results
presented in Figure 7, we observe that by having 100K to 1M
memory segments, we can have the best of both worlds. While
we do not see any tangible performance degradation in terms the
energy consumption, indexing this number of memory segments
will consume a couple of MBs in memory. Furthermore, by
indexing more than 1M memory segments, we do not see any
significant improvements in energy consumption.

To overcome the overhead incurred due to small key-value
pairs, batching can be applied so that small writes are grouped
together to form larger writes to memory segments. This way,
E2-NVM needs to map the free memory locations based on the
batch size rather than the key-value pair size, which leads to
reducing E2-NVM footprint. It is worth noting that we do not
make assumptions about word/byte-alignment. However, we
want to note that padding bytes are not stored. So, it does not
impact the storage of the data. Rather, padding is only performed

Figure 8: Sum of Square Error graph versus E2-NVM’s energy
consumption to find the optimal K.

for the prediction part of E2-NVM. The reason for this is that we
want to allow data with variable size to be applied to the model.

As a result, selecting very small memory segments (less than
1KB) when the memory pool size is very big (64 GB or more)
is not a good design decision because although the NVM’s
write energy consumption is very low, the system suffers from
scalability issues (dynamic address pool takes a big space in
DRAM). Likewise, although selecting big memory segments takes
up small space in DRAM, it is not energy efficient because we
will have fewer choices to find the most similar locations for the
incoming writes, which results in increasing the number of bit
flips and energy consumption. Therefore, this test can help us
find the most efficient memory segment size. This depends on
(1) the size of the area in NVM that we want to index (memory
pool size), (2) the size of DRAM that we use, and (3) the amount
of energy consumption that the system can tolerate.

Another important design consideration is to guarantee that
the dynamic address pool will never run out of free memory
addresses and E2-NVM will always be able to serve the incoming
requests. To this end, we set a minimum threshold to number
of addresses in each cluster and will trigger the re-training
process in the background when one of the clusters reaches
to the threshold. After the new model is ready, we switch to the
new model. It is worth noting that we do not need to train the
model in E2-NVM as long as the performance is not affected
substantially (please see Section 5.3 for more details).

Determining the Number of Clusters. A decision that
needs to be made before E2-NVM starts training its DL model
is to determine the number of clusters (K). There are a number
of factors that need to be taken into consideration: (1) As the
number of clusters increases, the memory contents inside clusters
become more similar to each other, and it saves more bit flips,
which means consuming less energy (see Section 5). (2) Although
havingmore clusters saves more energy whenwriting on NVM, it
also means that E2-NVM needs more time to finish training its DL
model, which means increasing latency and energy consumption
of the system.

Figure 8 shows the results of the test that we conducted to
determine the optimal value for K. For energy-consumption, our
experiments show a“valley” trend (the blue bar graph in the
figure): the energy-consumption is relatively high at both the
lowest and highest Ks, and is relatively low at intermediate Ks.
This is because, in low Ks, the number of clusters is too small and
the contents inside each cluster are not very similar to each other,
which leads to high energy consumption in NVM. Conversely,
increasing the number of clusters beyond a certain level increases
the total energy consumption while providing only a limited
return on bit flip reduction, also leading to energy inefficiency
in DRAM and CPU. This “energy-valley” trend indicates that
choosing the best value for K in an energy-aware fashion requires

(a) AMZ (b) CCTV

Figure 9: The training and validation loss for feature extraction
during training for different datasets.

a good trade-off between the amount of energy that the system
requires for writing on NVM and the energy that E2-NVM needs
to train its DL model.

In this paper, we use the “elbow method” [26, 37], which is one
of the most common techniques that is used to find the optimal
value for K in K-means clustering. The elbowmethod is expressed
as the following Sum of Squared Error (SSE) [49]:

𝑆𝑆𝐸 (𝑋,Π) =
𝐾∑︁
𝑖=1

∑︁
𝑥 𝑗 ∈𝐶𝑖

∥𝑥 𝑗 −𝑚𝑖 ∥22 (1)

where ∥ .∥2 denotes the Euclidean (L2) norm,
𝑚𝑖= 1

|𝐶𝑖 |
∑
𝑥 𝑗 ∈𝐶𝑖

𝑥 𝑗 is the centroid of cluster 𝐶𝑖 where the
cardinality is |𝐶𝑖 |, Π={𝐶1,𝐶2, ...,𝐶𝐾 }, and 𝑋={𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝑁 } (N
is the feature vector).

To determine the optimal number of clusters, we identify a
sharp decrease known as the “elbow” or “knee”, which suggests
the optimal value for K [26, 37, 49]. Figure. 8 shows an example
of choosing the optimal K by seeing the significant decrease in
the SSE graph, which is in K = 6 (the data set is CIFAR-10). As
we can see in this figure, this value is also a good estimation for
the energy consumption of E2-NVM for different values of K.

5 EXPERIMENTS
5.1 Methodology
The experiments are executed on (1) an Intel Core i7 processor
running at 4.7 GHz with 4 cores, each of which has 1MB L2 Cache
and 12MB L3 Cache using 32GB of Intel® Optane™ Memory
Series 3D Xpoint™ and 16 GB of DRAM, and (2) an Intel Xeon®
@2.6GHz with 16 cores, an Nvidia Tesla K20m GPU with 5GB
memory using 32 GB DDR4 main memory and a 256 GB SSD
hard drive. The machine has 32GB DDR3main memory, 128GB of
Intel® Optane™ Persistent Memory 200 Series (PMEM Module),
and a 256 GB SSD hard drive. We use the latter machine to get
the results in Figures 7, 11, 16 and 18. Although the amount of
energy might be different for different setups, both machines
showed similar behavior in terms of the relationship between
the number of flipped bits and energy consumption. We utilize
thread-safe methods in E2-NVM. This is the case for the data
structures that we utilize to maintain address pools and mapping
(contention in other parts such as the VAE would not lead to
concurrency anomalies since operations on them are read-only).

There are two methods to measure energy consumption:
(1) Power Monitors, which use hardware tools to measure the
actual power of the device. Despite being very precise, they are
extremely difficult to set up. (2) Energy Profilers, which are vastly
used by researchers, do not require any special hardware, or
power sensors, and estimate the power cost of different hardware
using estimation models [12]. In this paper, we use an energy
profiler named Perf, which is a performance analysis tool and

(a) Amazon Access Samples (b) 3D Road Network (c) Sherbrooke

(d) seq 2 traffic surveillance (e) CIFAR-10 (f) PubMed

Figure 10: The average number of actual bit updates per PMem’s cache line access granularity as well as the latency of prediction per item
in E2-NVM for the real-world textual and multimedia datasets.

a part of the Intel’s RAPL interface [18, 31]. we measured the
energy and power consumption of the memory (both DRAM and
PMEM), while running our tests using the perf [13] tool:

$ perf stat -a -r 5 -e power/energy-cores/,
power/energy-ram/, power/energy-gpu/,
power/energy-pkg/, power/energy-psys/ ./test

↩→

↩→

This tool provides the collection of energy measurements from
various components of a computer system such as: cores, Intel’s
GPUs, package (all the core and un-core components), DRAM,
total power consumption of a node, and so on. Also, the sampling
rate in our tests is 1000 samples per second.

5.2 Overview and setup
In this section, we evaluate our proposed method in terms
of bit flips, energy efficiency, and performance. We perform
experiments on a real Intel Optane memory device to measure
energy efficiency and performance overhead. Also, we perform
experiments with emulated Optane memory to measure bit flip
reduction (which cannot be measured using the real device.)

We compare E2-NVM with two main groups of solutions: 1)
persistent K/V stores that use specialized data structures to deal
with the limitations of NVMs [25, 26, 35, 44, 53]. These methods
generally focus on reducing write amplification. 2) hardware-
based bit flip optimization methods that use the RBW technique
to alleviate the limitations of NVMs [10, 23, 36, 51]. Unlike the
previous category, this group focuses directly on decreasing the
number of bit flips.

5.2.1 Workloads. We have used various types of real-world
and synthetic workloads in our evaluations.

Synthetic workloads. In the first synthetic workload, we run
the YCSB benchmark [11] to evaluate E2-NVM. We load a 10-GB
data set into the database as the “old data” in the load phase.
Then, we run the workloads one by one, and compare the results.
The six core workloads that we used in our tests have different
read-write ratios and access patterns: Workload-A has 50% reads
and 50% updates, Workload-B has 95% reads and 5% updates,
and Workload-C has 100% reads; the keys are chosen from a
Zipfian distribution, and the updates operate on already-existing
keys. Workload-D involves 95% reads and 5% inserting new keys
(temporally weighted distribution). Workload-E involves 95%

range queries and 5% inserting new keys (Zipfian distribution),
while Workload-F has 50% read-modify-writes and 50% reads.

Real-world workloads (Numerical). We use Amazon
Access Samples [16] that contain 30K access log entries. We also
use the 3D Road Network Data Set [19, 30] that contains 434874
entries of road networks information of North Jutland, Denmark.
Finally, we use the collections of the DocWord database named
“PubMed”, which consists of 730 million entries [16].

Real-world workloads (Images). We use two of the most
widely used datasets for machine learning and computer vision
research, MNIST and CIFAR-10 datasets [32]. The former is a
dataset of 60,000 28x28 grayscale images of the 10 digits, along
with a test set of 10,000 images. The latter dataset is a subset of
the 80 million tiny images dataset and consists of 60,000 32x32
color images, which are grouped into 10 different classes.

Real-world workloads (Videos). In the last set of tests, we
use two video datasets: 1) The Sherbrooke video dataset [24],
which is more than two-minute-long video (with resolution
800x600), which was filmed at the Sherbrooke/Amherst
intersection in Montreal by a camera located a couple of meters
above the ground, and 2) Traffic Surveillance video [5], which is
collected from seven intersections in the Danish cities of Aalborg
and Viborg. In this test, we use two sequences of RGB cameras
called CCTV1 and CCTV2. For the first dataset, we stored the
first 30 seconds of this video as the old data and then we replaced
it with the rest of the video as the new data. We did the same
with the second datasets with one difference and that is storing
first one minute of the video as the old data and using the rest of
the video as the new data.

5.3 Evaluation Results
Deep learning model characteristics. In the first set of
experiments, Figure 9 shows the E2-NVM’s learning curves,
which is a metric to show howwell the DLmodel is “generalizing”
the learned patterns. We have evaluated our DL model on the
training dataset and on a hold-out validation dataset, which is
completely isolated from the training dataset. In this figure, we
have used the loss metric whereby smaller values indicate better
learning and a value of 0 indicates that the training dataset was
learned perfectly, and no mistakes were made. As we can see
from the results, our deep learning model converges very quickly,

(a) 1KB (b) 2KB

(c) 4KB (d) 16KB

Figure 11: The average amount of energy consumed per PMem’s cache line access granularity when memory segment size changes for
YCSB workloads.

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(a) Amazon Access Samples

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it B+Tree

Path hashing
FP-Tree
NoveLSM
Wisckey

(b) 3D Road Network

0

0.5

1

Without E2_NVM With E2_NVM
Av

e.
 N

o.
 o

f
bi

tf
lip

s/
da

ta
 b

it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(c) Sherbrooke

0

2

4

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(d) Log-normal data distribution

0

2

4

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(e) Zipf data distribution

0

1

2

Without E2_NVM With E2_NVM

Av
e.

 N
o.

 o
f

bi
tf

lip
s/

da
ta

 b
it

B+Tree
Path hashing
FP-Tree
NoveLSM
Wisckey

(f) PubMed

Figure 12: The impact of augmenting E2-NVM to data stores in terms of the average number of bit updates per writing 1 data bit.

which shows the ability of E2-NVM to learn and generalize the
existing patterns in memory segments.

Comparison with RBW and memory-aware methods.
Figure 10 shows the results for comparing E2-NVM with the
following RBW methods: DCW [51], MinShift [36], FNW (Flip
’n Write) [10], and Captopril [23]. We also compare with a
clustering-based memory-aware solution, PNW [26]. We vary
the number of clusters, k, ranging from k=1 to k=30 for different
datasets (note that k=1 is a baseline that aims to show the
performance without getting the benefits of the clustering-based
methods. Also, the only methods that are impacted by increasing
the number of clusters are the clustering-based methods, PNW
and E2-NVM.). We have compared the performance of E2-NVM
to others in terms of the number of bits updated/written per
PMem access. In this figure, when we pick k=1, the result for
E2-NVM, PNW, and DCW are the same since they all behave
similarly with no clustering. Figure 10 shows that our method
enhances the previous ML-based method (PNW [26]) by up to
3.2x and the baseline bit flip optimized methods by up to 4.23x.

We have also calculated the model prediction latency for both
PNW and E2-NVM. In our method, the delay is higher compared
to PNW because E2-NVM performs two predictions, one by
the DL model and the other by the clustering ML model. This
highlights a performance-accuracy trade-off (where performance

is the prediction overhead and accuracy is the accuracy of finding
a similar memory segment) where E2-NVM favors accuracy but
introduces more overhead compared to PNW.

In the next experiment, we calculate the average amount of
energy that is consumed per PMem’s cache line access granularity
when the memory segment size changes for YCSB workloads on
a real Optane memory device. Figure 11 shows that by choosing
smaller segment size, our method can save more energy since
the model can predict memory segments with higher accuracy,
which leads to minimizing the number of bit flips. This figure also
shows another factor that affects the energy consumption of our
method—the number of clusters. When there are more clusters,
the similarity among the items within a cluster increases, which
leads to fewer number of bit flips and less energy consumption.

Augmenting E2-NVM to existing NVM data structures.
In the next experiment, we tested the performance of the
implemented methods, such as B+-Tree [9], Wisckey [34], Path
Hashing [53], FP-Tree [44], and NoveLSM [25]), in terms of the
number of updated bits in two different ways: before plugging to
E2-NVM, and after plugging to E2-NVM. The results are shown
in Figure 12. When not plugged to E2-NVM, B+-Tree has the
worst performance because, in a regular B+-Tree [9], the items
in leaf nodes need to be sorted, which increases the number of
movements and bit flips. After we tested the performance of the

(a) Average updated bits ratio

(b) Total memory energy

Figure 13: E2-NVM’s performance in terms of the average updated
bits ratio and totalmemory energy efficiency for differentmemory
segment and memory pool sizes.

methods in terms of bit flips, we plugged them to E2-NVM and
repeated the same tests. After plugging each method to E2-NVM,
their performance improves by up to 91% by preventing a lot
of unnecessary bits from being flipped. These tests validate the
ability to plug existing data indexing structures to E2-NVM to
reduce bit flipping.

The effect of memory pool size and memory segment
size on the total memory energy. Figure 13 illustrates the
overall performance of E2-NVM in terms of energy efficiency
and updated bits for different memory segment and pool size
choices for the mixture of all the real workloads in this paper. For
the overall energy efficiency shown in Figure 13b, we observe
that the E2-NVM’s power consumption increases as the ratio
of the memory segment size to the memory pool size increases,
which also aligns with results of the average bit flips ratio shown
in Figure 13a. Based on this observation, we conclude that the
smaller we choose the size of the memory segments compared
to the size of the data zone (pool size), the more tree nodes are
available for E2-NVM, which also results in fewer bit flips and
less energy consumption.

Padding evaluations. In multimedia applications, such as
CCTV and video storage, the size of data objects is typically
fixed depending on the chosen resolution. This enables us to use
E2-NVM directly as we can fix the input size of the model to
match the data object size. However, to generalize our solution
to handle data items of arbitrary sizes using the same model, we
introduced padding methods. Figure 14 shows the performance
of our proposed padding strategies. In this experiment, there are
three padding positions. In the first one, the original data is at the

beginning and the padding part is concatenated to the rightmost
side of the data (padding at the end). In the second position, the
data stays in the middle of the frame and padded bits are split
into equal parts and appended to both sides of the data (padding
in the edges). Finally, in the third position, the data is placed at
the rightmost side of the frame and the padding part is attached
to the left side of the data (padding in the beginning).

For each test, first, the DL model is trained on the training
dataset (80% of the complete dataset). To generate the test set,
we crop one-third of the data items in the positions that we
mentioned and then pad it. So, for each dataset, we test 7 padding
strategies and across 3 different padding positions.

In Figure 14, we make several observations about padding
strategies, i.e., input-based (IB), dataset-based (DB), memory-
based (MB), learned-based(LB), zero (0), and one (1) paddings.
First, data-aware padding schemes outperforms the data-agnostic
schemes in terms of reducing the number of bit flips. Second,
learned padding scheme has the highest performance in terms
of the average number of bit flips. Third, padding in the edges
has higher variance compared to padding at the beginning or
end. To summarize, the performance of padding improves with
increasing complexity of models, from data-agnostic schemes to
data-aware schemes and the learned padding.

The accuracy of mapping a data item to the most appropriate
cluster drops when a large fraction of bits are padded bits. In
Figure 15, we evaluate the impact of padding by measuring the
number of bit flips under different percentages of data frames
are being padded. In this experiment, we first trained the DL
model on the CCTV’s training dataset. Then, we cut off different
percentages of the frames of the testing dataset and feed them
to E2-NVM. Since the size of the input is smaller than what the
model has been trained on, E2-NVM uses the learned padding
strategy to fit the data items into the original frame sizes. In
other words, in this experiment, we generate the missing parts
of the frames in the testing dataset, so we can compare it with
the baseline where the frames of the testing dataset were intact
(the 0% padding line in the figure).

Figure 15 shows that when there is no padding (0% padding),
the number of bit flips is minimum, the best performance. The
reason is that when the input data frames are the same size as
the training data frames, E2-NVM can find the best cluster for
the incoming data items and minimize the number of bit flips.
For padded data, we measure the number of bit flips per word
based on the written bits only (padded bits are not written to
NVM.) When the percentage of padding increases, it becomes
more difficult for the system to predict the best padded part and
find the most similar clusters. However, when the percentage
of padding is low (10%), there is minimal loss in performance.
This motivates combining the padding strategy with batching—as
described in the padding section—to reduce the percentage of
padding.

Memory overhead analysis of E2-NVM in terms of
energy consumption.To see how training and re-training of our
deep learning model affect the energy consumption of the system,
we conducted an experiment to track the behavior of our method
as time goes by. In this test, we first created a transactional object
store with a total pool size of 8GB and element/segment size of
64KB in the Intel Optane DC PMM (in the App Direct Mode) and
seeded it with data items from ImageNet [14], which contains
over 14 million labeled images. Also, we re-sized the images to
fit the size of the elements (64KB) in the pool. Figure 16 shows
the result in terms of the amount of total package energy that is
consumed after a specific time. In this test, we did the following
steps, which are marked on Figure 16 from 1 to 4: (1) We trained
our DL model on the memory contents of the pool before we

0

256

512

768

1024

0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB 0 1

ra
nd IB DB M

B LB

MNIST Sherbrooke video Data Set CCTV CIFAR-10

Av
e.

 N
o.

 o
f b

it
fli

ps
 p

er

PM
em

's
ca

ch
e

lin
e

padding at the end padding in the edges padding in the beginning

Figure 14: The average number of bit flips per word after applying different padding strategies.

0

20

40

5 10 20 30 40 50 60Sw
itc

h
bi

ts
 p

er
 P

M
em

 a
cc

es
s (

%
)

Padding percentage

Base line (0% padding)

Figure 15: The number of bit flips when different percentages of
the video frame size is padded by the learned padding scheme for
the CCTV dataset.

start accepting the write requests (stage 1 in the figure). (2) After
our DL model is trained, we started writing new data items on
the existing memory contents of the pool from the ImageNet
data set. In this step, we overwrote the pool with the items from
the same data set (combination of both existing and new images)
five times. (3) In step 3, we retrained the model to reflect the
changes in the data distribution. It is worth noting that, for the
sake of this experiment, we stopped writing on NVM until the
retraining process finishes although, in E2-NVM, the writing
process does not have to be stopped because the retraining is
done in the background lazily. (4) In the last step, we resumed
writing new data on NVM.We overwrote the pool with ImageNet
data for four more times. As we saw this test, the total energy
that E2-NVM saves up by writing similar contents will make up
its energy overhead caused by training, retraining and prediction.

Another important observation that we can make from this
test is that we can make a precise estimation of the cost of the
re-training process in terms of energy consumption and latency
by looking at the the cost of the training process of the same
model at the initialization phase (stage 1 in Figure 16). The reason
behind is that the training/re-training cost depends on the size of
the data set (memory pool), dimensionality (memory segment),
the complexity of the deep learning model that we use, and the
hardware that we run our model on, which all are the same for
both training and re-training processes.

Adaptability of E2-NVM to the dynamic changes. To
analyze the behavior of E2-NVM in different scenarios and
its adaptability to the system’s changes, we conduct the last
experiment in a dynamic environment when the content of the
memory and the incoming workload changes over the course of
time. You can see the results in Figure. 17. In this test, we use three
image data sets from Tensorflow, i.e., MNIST, Fashion-MNIST,
and CIFAR-10. For this test, we did the following scenarios:

1 2 3 4

Figure 16: Tracking the package energy sampled every 1ms for
E2-NVM when it goes through periodic training, re-training and
writing phases compared to thewear-leveling technique over time.

Scenario 1: we seeded the data zone in NVMwith a completely
random content and then trained the E2-NVM model on this
content. After training the model and creating the cluster-to-
memory dynamic address pool, we started streaming 54K images
(Figure. 17 part I) from MNIST as the new data into the system
to overwrite the old data followed by deleting half of the items
to make the system dynamic. As we see from the results (Fig 17
part I-a), because the content that the model is trained on and the
incoming writes are different, the number of bit flips fluctuates a
lot, but as time goes by, fluctuations become narrower toward the
bottom (Figure. 17 part I-b) due to the fact that E2-NVM updates
the cluster contents by recycling the deleted items and bringing
them back to the cycle.

Scenario 2: we trained the model one more time with the
current content and updated the dynamic address pool. Then,
we continued streaming 27K images from the same data set
(MNIST) as the new data into the system to overwrite the old
data. Figure 17 shows that fluctuations and the average number
of bit flips decrease. Even at the end of this stage, where the old
data is almost completely replaced with the new one, we still do
not see significant changes in performance (Fig 17 part II).

Scenario 3: Starting from this point, we send a mixture of
27K items from two different data sets, i.e., Fashion-MNIST and
MNIST, at the ratio of 1 to 2. Figure. 17 part III shows that the
performance is affected immediately (the number of updated bits
increases) since two-third of the incoming data are entirely from
the content that the model has never seen before and results in a
larger hamming distance.

Scenario 4 (part IV in the figure): we sent 30K images from
the third data set, i.e., CIFAR-10. The number of updated bits

Figure 17: Tracking the performance of E2-NVM by changing the
memory content and incoming writes over the course of time.

Figure 18: E2-NVM’s training costs in terms of latency and energy
consumption per epoch for indexing different number of memory
segments.

fluctuated more since (1) the old data contains the items from
completely different data sets and (2) the model has never seen
(been trained) the incoming data.

Scenario 5: In this phase, we continued sending 28K images
from CIFAR-10 with one difference: we re-trained our model on
the existing content. Figure. 17 part V-c shows that the results
improve very fast since the data set and the content that the
model is trained on are from the same type. As a result, we have
seen that, depending on the application and the workload, we do
not always have to re-train the model rapidly, and we can use
the same model for a certain amount of time before it needs to be
re-trained. This allows us to do the re-training in the background
lazily and update the model periodically while the current model
is serving the requests. To this aim, E2-NVM needs to know
when to start re-training the model before the old one becomes
inefficient, i.e. the system’s performance decreases in terms of
energy consumption. This is of great importance because we
might not want to give all the available resources to the model
since the system needs to serve the requests without any problem
while the newmodel is being re-trained.We performed additional
tests to evaluate the costs for re-training a new model (Figure 18).
This experiment is performed on ImageNet [14].

In Figure 18, we measured the re-training time of the model
per epoch for a different number of memory segments. We run
these tests on the second hardware setup. Based on the results,
the model needs more time and energy to be re-trained as the
number of memory segments increases. This gives us an idea of
setting the load factor so that we have enough time to finish re-
training the new model before the old model becomes inefficient.
Training the model sooner than this threshold would not result
in a noticeable performance improvement since the pattern of
the bits in the content is almost the same as the training time.
Also, by waiting too long before re-training the model, the system
misses the opportunity to improve the performance considerably.

Figure 19: The maximum update addresses and wear-leveling as
CDFs by applying E2-NVM with k=30 clusters.

Although decreasing the number of writes is important, wear-
leveling is equally important to extend the lifetime of PCM.
The reason is that some blocks of the memory device may
receive a much higher number of writes than the other blocks,
and as a result, wear out sooner[26]. Therefore, to observe the
performance of E2-NVM in terms of the distribution of the
maximum number of bit flips and the wear-leveling of PCM,
we conduct two more tests. In these tests, we run E2-NVM when
k = 30 clusters, on the mixture of MNIST and Fashion-MNIST
data sets. For this test, we first warm up the data zone with 28K
items from the combination of both data sets. Then, we stream
112K writes from the same data sets to the system. During the
test, we also perform delete actions to make space for incoming
writes (each word in the data zone is updated 4 times on average).

Figure 19 shows the maximum number of times the addresses
in the data zone are written and the wear-leveling of memory bits
as a cumulative distribution function (CDF). This figure illustrates
two results: (1) the estimation of the likelihood to observe an
address in the data zone of PCM that is written less than or
equal to a specific number of times, and (2) the estimation of the
likelihood to observe a memory bit in the data zone of PCM that
is written less than or equal to a specific number of times. For
example, as we can see in Figure. 19, the estimated likelihood to
observe an address in the PCM data zone to be written less than
or equal to 10 (P (X ≤ 10)) is 81% (red color). Similarly, we observe
that the estimated likelihood of a memory bit being written less
than or equal to 5 times is 85%. This likelihood rises to 98% when
a memory bit being written equals to 7 times (blue color). This
important observation shows that (1) E2-NVM distributes write
activities across the whole PCM chip, and (2) E2-NVM distributes
bit flips evenly across the whole data zone of the PCM chip, and
as a result, the lifetime of PCM is extended more.

6 CONCLUSION

In this paper, we have explored the use of software-level
approaches to improve energy efficiency and write endurance of
NVMs. Specifically, a deep learning model is used to mapmemory
locations based on the hamming distance of their content. This
mapping is used when new writes arrive to assign them to
memory location with similar content. This reduces the number
of bit flips, which leads to better write endurance and energy
efficiency.

7 ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their insightful
comments and feedback. This research is supported in part by
the NSF under grant CNS-1815212.

REFERENCES
[1] A. Alameldeen and D. Wood. Frequent pattern compression: A significance-

based compression scheme for l2 caches. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2004.

[2] J. Altosaar. Tutorial - What is a Variational Autoencoder?, Aug. 2016.
[3] M. Andalibi, M. Hajihosseini, S. Teymoori, M. Kargar, and M. Gheisarnejad.

A time-varying deep reinforcement model predictive control for dc power
converter systems. In 2021 IEEE 12th International Symposium on Power
Electronics for Distributed Generation Systems (PEDG), pages 1–6. IEEE, 2021.

[4] J. Arulraj et al. Let’s talk about storage & recovery methods for non-
volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 707–722, 2015.

[5] C. H. Bahnsen and T. B. Moeslund. Rain removal in traffic surveillance: Does
it matter? IEEE Transactions on Intelligent Transportation Systems, pages 1–18,
2018.

[6] D. Bittman et al. Optimizing systems for byte-addressable {NVM} by reducing
bit flipping. In 17th {USENIX} Conference on File and Storage Technologies
({FAST} 19), pages 17–30, 2019.

[7] M. Capra, R. Peloso, G. Masera, M. Ruo Roch, and M. Martina. Edge computing:
A survey on the hardware requirements in the internet of things world. Future
Internet, 11(4):100, 2019.

[8] Y. Che, Y. Yang, A. Awad, and R. Wang. A lightweight memory access pattern
obfuscation framework for nvm. IEEE Computer Architecture Letters, 19(2):163–
166, 2020.

[9] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[10] S. Cho and H. Lee. Flip-n-write: A simple deterministic technique to improve
pram write performance, energy and endurance. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 347–
357, 2009.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154, 2010.

[12] L. Cruz. Tools to measure software energy consumption from your computer.
http://luiscruz.github.io/2021/07/20/measuring-energy.html, 2021. Blog post.

[13] A. C. De Melo. The new linux’perf’tools. In Slides from Linux Kongress,
volume 18, pages 1–42, 2010.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[15] D. B. Dgien, P. M. Palangappa, N. A. Hunter, J. Li, and K. Mohanram.
Compression architecture for bit-write reduction in non-volatile memory
technologies. In 2014 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), pages 51–56. IEEE, 2014.

[16] D. Dua and C. Graff. UCI machine learning repository, 2017.
[17] B. Gu, S. Kargar, and F. Nawab. Efficient dynamic clustering: Capturing

patterns fromhistorical cluster evolution. arXiv preprint arXiv:2203.00812,
2022.

[18] P. Guide. Intel® 64 and ia-32 architectures software developer’s manual.
Volume 3B: System programming Guide, Part, 2(11), 2011.

[19] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul. Ecomark: evaluating models
of vehicular environmental impact. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, pages 269–278,
2012.

[20] X. Guo, L. Gao, X. Liu, and J. Yin. Improved deep embedded clustering with
local structure preservation. In IJCAI, pages 1753–1759, 2017.

[21] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[22] J. Huang, Y. Hua, P. Zuo, W. Zhou, and F. Huang. An efficient wear-level
architecture using self-adaptive wear leveling. In 49th International Conference
on Parallel Processing-ICPP, pages 1–11, 2020.

[23] M. Jalili and H. Sarbazi-Azad. Captopril: Reducing the pressure of bit flips on
hot locations in non-volatile main memories. In 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1116–1119. IEEE, 2016.

[24] J.-P. Jodoin, G.-A. Bilodeau, and N. Saunier. Urban tracker: Multiple object
tracking in urban mixed traffic. In IEEE Winter Conference on Applications of
Computer Vision, pages 885–892. IEEE, 2014.

[25] S. Kannan et al. Redesigning lsms for nonvolatile memory with novelsm.
In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), pages
993–1005, 2018.

[26] S. Kargar, H. Litz, and F. Nawab. Predict and write: Using k-means clustering to
extend the lifetime of nvm storage. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 768–779. IEEE, 2021.

[27] S. Kargar and F. Nawab. Extending the lifetime of nvm: challenges and
opportunities. Proceedings of the VLDB Endowment, 14(12):3194–3197, 2021.

[28] S. Kargar and F. Nawab. Hamming tree: The case for memory-aware bit
flipping reduction for nvm indexing. In CIDR, 2021.

[29] S. Kargar and F. Nawab. Challenges and future directions for energy, latency,
and lifetime improvements in nvms. Distributed and Parallel Databases, pages
1–27, 2022.

[30] M. Kaul, B. Yang, and C. S. Jensen. Building accurate 3d spatial networks
to enable next generation intelligent transportation systems. In 2013 IEEE
14th International Conference on Mobile Data Management, volume 1, pages
137–146. IEEE, 2013.

[31] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou. Rapl in action:
Experiences in using rapl for power measurements. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS), 3(2):1–
26, 2018.

[32] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[33] W. Li et al. Hilsm: an lsm-based key-value store for hybrid nvm-ssd storage
systems. In Proceedings of the 17th ACM International Conference on Computing
Frontiers, pages 208–216, 2020.

[34] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Wisckey: Separating keys from values in ssd-conscious storage.
ACM Transactions on Storage (TOS), 13(1):1–28, 2017.

[35] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey. The VLDB
Journal, 29(1):393–418, 2020.

[36] X. Luo, D. Liu, K. Zhong, D. Zhang, Y. Lin, J. Dai, and W. Liu. Enhancing
lifetime of nvm-based main memory with bit shifting and flipping. In 2014
IEEE 20th International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 1–7. IEEE, 2014.

[37] T. S. Madhulatha. An overview on clustering methods. arXiv preprint
arXiv:1205.1117, 2012.

[38] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE Access,
6:39501–39514, 2018.

[39] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE Transactions on Parallel
and Distributed Systems, 27(5):1537–1550, 2015.

[40] K. Montanez. Amazon Access Samples. UCI Machine Learning Repository,
2011.

[41] F. Nawab, D. Chakrabarti, T. Kelly, and C. Morrey. Zero-overhead nvm crash
resilience. In Non-Volatile Memories Workshop, 2015.

[42] F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B. Morrey III. Procrastination
beats prevention: Timely sufficient persistence for efficient crash resilience.
In EDBT, pages 689–694, 2015.

[43] F. Nawab et al. Dalí: A periodically persistent hash map. In 31st International
Symposium on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[44] I. Oukid et al. Fptree: A hybrid scm-dram persistent and concurrent b-tree for
storage class memory. In Proceedings of the 2016 International Conference on
Management of Data, pages 371–386, 2016.

[45] P. M. Palangappa and K. Mohanram. Flip-mirror-rotate: An architecture for
bit-write reduction and wear leveling in non-volatile memories. In Proceedings
of the 25th edition on Great Lakes Symposium on VLSI, pages 221–224, 2015.

[46] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.
Enhancing lifetime and security of pcm-based main memory with start-gap
wear leveling. In 2009 42nd Annual IEEE/ACM international symposium on
microarchitecture (MICRO), pages 14–23. IEEE, 2009.

[47] S. Song, A. Das, O. Mutlu, and N. Kandasamy. Improving phase change
memory performance with data content aware access. In Proceedings of the
2020 ACM SIGPLAN International Symposium on Memory Management, pages
30–47, 2020.

[48] M. Staimer. How the cxl interconnect will affect enterprise
storage. https://www.techtarget.com/searchstorage/tip/How-the-CXL-
interconnect-will-affect-enterprise-storage. Accessed: 2021-08-05.

[49] M. Syakur, B. Khotimah, E. Rochman, and B. D. Satoto. Integration k-means
clustering method and elbow method for identification of the best customer
profile cluster. In IOP conference series: materials science and engineering,
volume 336, page 012017. IOP Publishing, 2018.

[50] Y. Wang, H. Yao, and S. Zhao. Auto-encoder based dimensionality reduction.
Neurocomputing, 184:232–242, 2016.

[51] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A low power
phase-change random access memory using a data-comparison write scheme.
In 2007 IEEE International Symposium on Circuits and Systems, pages 3014–3017.
IEEE, 2007.

[52] Q. Zeng and J.-K. Peir. Content-aware non-volatile cache replacement. In
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 92–101. IEEE, 2017.

[53] P. Zuo and Y. Hua. A write-friendly hashing scheme for non-volatile memory
systems. In Proc. MSST, 2017.

http://luiscruz.github.io/2021/07/20/measuring-energy.html
https://www.techtarget.com/searchstorage/tip/How-the-CXL-interconnect-will-affect-enterprise-storage
https://www.techtarget.com/searchstorage/tip/How-the-CXL-interconnect-will-affect-enterprise-storage

	Abstract
	1 Introduction
	2 Background
	2.1 System Model
	2.2 Motivation: Software-Level Bit Flipping Reduction
	2.3 Related Work

	3 E2-NVM Design
	3.1 Variational Autoencoder (VAE)
	3.2 E2-NVM Design
	3.3 E2-NVM Integration and Operations
	3.4 E2-NVM benefits

	4 The padding strategy
	4.1 Padding Strategies

	5 Experiments
	5.1 Methodology
	5.2 Overview and setup
	5.3 Evaluation Results

	6 Conclusion
	7 Acknowledgments
	References

