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Abstract. Knowledge graphs have two views: an entity graph in the
instance view and a concept graph in the ontology view. Recent studies
reveal that modeling the two graphs jointly can benefit the understand-
ing to either one. However, the existing work has flaws on both mod-
elling the hierarchical structures in the Euclidean space, and capturing
the deep cross-view interaction between an entity and its correspond-
ing concept. In this paper, we propose to explore hyperbolic space for
two-view knowledge graph embedding, which provides more effective and
efficient embedding learning mechanism, especially for hierarchical struc-
tured knowledge. We also propose to capture the deep cross-view interac-
tion between an entity and its corresponding concept through modeling
local structure information from intra-view neighbor nodes with hyper-
bolic attention mechanism. Finally, we propose to maintain the struc-
tural correspondence between the concept graph and the entity graph by
first encoding two graphs with the same embedding model respectively
and then aligning the two graphs with a hyperbolic transformation. Our
empirical study conducted on two benchmark data collections proves
that our model outperforms several state-of-the-art two-view knowledge
graph embedding models.

Keywords: Knowledge representation learning · Hyperbolic attention
mechanism · Two-view knowledge graph

1 Introduction

Knowledge graph embedding (KGE), which encodes knowledge graph (KG)
structures into low-dimensional embedding spaces, has attracted a lot of atten-
tion in the past decade [2,15,23]. As an effective way to capture the latent
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semantic relations of entities and concepts, KGE provides an efficient and sys-
tematic solution to various knowledge-driven machine learning tasks such as
knowledge graph completion [25], entity typing [26], entity alignment [8] and
question answering [3].
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Fig. 1. An example knowledge graph in two views

Normally, a KG can be viewed in two levels as the example shown in Fig. 1,
which includes an entity graph in the instance level and a concept graph
in the ontology level. While most traditional KGE models [14,19] take concepts
as special kind of entities, and learn the representations for both concepts and
entities in the same way, some other efforts is limited to conduct KGE in a sin-
gle view, that is, either on the instance-view graph [1,2] or on the ontology-view
graph [7,9]. Some recent studies [10,14] reveal that representing a KG from both
views provides more comprehensive insights, and thus improves the understand-
ing to both views. A most representative work JOIE [10] proposes to jointly
model the two graphs, i.e., entity graph and concept graph, and then character-
ize the cross-links between concepts and entities with a cross-view association
model. While entity embeddings could provide detailed and rich information
for their corresponding concepts, a concept embedding also provides a high-
level summary of its corresponding entities, which is very helpful to long-tail
instances [10]. Some other efforts [14,22] also works on leveraging concepts as
supplementary information to assist entity representation learning.

However, the existing two-view KGE models are flawed in three aspects: (1)
It is verified that the characterization of hierarchical structures in the concept
meta-relations in the ontology view is crucial for KGE learning [10,14], where
the hierarchical structures include hypernym-hyponym relations such as (Per-
son, sub class of, Scientist), and composition relations such as (City, part of,
Country). Nevertheless, the existing work ignores the corresponding hierarchi-
cal structures in the instance graph, such as (BeiJing, located in, China) and
(The Nobel Prize in Physics (1921), is A, Nobel Prize). Thus, the learned entity
embeddings are insufficient for the expression of hierarchical relationship. (2) So
far, only conventional Euclidean space is employed for doing two-view KGE, but
Euclidean space is not suitable for modeling hierarchical patterns, given that



Two-View Hyperbolic KGE with Entities and Concepts 307

hierarchical patterns requires high-dimensional representation space to preserve
different behaviors through different geometric patterns, but the space capacity
in Euclidean space expands polynomially [24]. As a result, embedding hierarchi-
cal patterns in Euclidean space incurs huge memory costs. (3) The cross-view
association model explored by the existing work only characterizes the connec-
tions between the entity and its corresponding concept, but ignores the local
structure information explored from their intra-view neighbor nodes, which could
provide deep cross-view interaction between the entity and its corresponding con-
cept. For instance in Fig. 1, “Einstein”’s neighbor node “Theory of Relativity”
in the entity graph, and “Scientist”’s neighbor node “Theory” could strengthen
the connections between “Einstein” and “Scientist”.

To address the above flaws, we propose HyperJOIE, a novel two-view joint
knowledge graph embedding model in a hyperbolic space. Compared to the
Euclidean space, the hyperbolic space could offer greater capacity for embed-
ding learning [18], thus is naturally more suitable for expressing hierarchical
structures. Thus, the second flaw of the existing models is solved. Besides, mod-
eling KGs in the hyperbolic space usually requires less dimensions than that in
the Euclidean space, but can still reach competitive or even better results [5].
Although the hyperbolic space has been employed in single-view KGE [1,5], it
is not applied to two-view KGE yet. To overcome the third flaw of the existing
models, we would like to capture the local structure information from intra-view
neighbor nodes with a recent proposed attention mechanism in the hyperbolic
space [24]. Finally, while concept graph could be regarded as an abstract to the
entity graph, the entity graph is an instantiation of the concept graph. In order
to maintain the structural correspondence between the two graphs to the great-
est extent, we propose to encode the two KGs with the same embedding model
and then align the them with a hyperbolic transformation. In such a way, the
first flaw of the existing work is handled.

To summarize, our contributions are as follows: (1) This work is the first
attempt to explore two-view KGE in hyperbolic space, which provides more
effective and efficient embedding learning mechanism, especially for hierarchical
structured knowledge. (2) We propose to capture the deep cross-view interaction
between the entity and its corresponding concept through modeling local struc-
ture information from intra-view neighbor nodes with an attention mechanisms
in the hyperbolic space. (3) We propose to maintain the structural correspon-
dence between the concept graph and the entity graph by first encoding the two
KGs with the same embedding model respectively and then aligning the two
KGs with a hyperbolic transformation.

Our experiments conducted on two datasets verifies the effectiveness of our
model comparing to SOTA models.

2 Related Work

This section studies both single-view KGE models and two-view joint KGE mod-
els, and then covers some recent progress on hyperbolic KGE models.
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2.1 Single-View KGE Models

Recent years have witnessed plenty of works contributing on the single-view
KGE. A survey [11] categorizes KGE into four aspects, including representation
space, scoring function, encoding models and auxiliary information. Given the
triples (h, r, t), where r is the relation between head entity h and tail entity t,
the key of KGE is to choose a proper representation space, to devise an effective
model encoding triples and to design a plausibility scoring function for opti-
mizing objective. Most models are mainly based on Euclidean space [2,17,23],
the others basically represent in complex vector space [20,21], whereas they are
all linear embeddings that lack hierarchical expressiveness and spatial capacity.
Although linear embedding methods are fairly simple, it is difficult to obtain
enough capacity for tree structure data with the same dimensions as hyper-
bolic embedding. In addition, a few studies focus on embedding concept graph.
On2Vec [7] proposes an augment method of the concept graph by replacing
fine-grained concepts with coarse-grained concepts in the concept triples.

2.2 Two-View Joint KGE Models

Different from single-view KGE, two-view KGE not only trains two graphs
respectively but also divides the single-view link prediction task into graph
completion and type inference. Recent studies [10,14,22] show that the jointly
modeling two-view graph can improve KG representation performance in both
knowledge graph completion and entity typing. There have been several investi-
gations [22] taking advantage of concepts as additional information to improve
KG completion performance. Further, in order to model hierarchical relations,
TransC [14] proposes to represent entities and concepts in the same embedding
space with cross-view links association. Further, MTransE [8] aims at entity
alignment and proposes to learn a transformation across two separate embed-
ding spaces. However, TransC ignores differences in topology and data scale
between entity graph and concept graph, and MTransE neglects the internal
hierarchy of two graphs.

JOIE [10] is the first and the only joint two-view KGE model with the
Euclidean space. This model introduces a hierarchical loss to model hierarchy
and a transformation function to capture the correlation between entity graph
and concept graph. Nevertheless, JOIE has weak hierarchy capacity since its rep-
resentation space is the Euclidean space. Besides, owing to encoding two graphs
with the uniform parameters, the problem of asynchronous convergence may
occur between different modules, which limits the optimization process and is
difficult to reach the global optimum.

2.3 Hyperbolic KGE Models

The recent progress in hyperbolic graph neural network challenges traditional
graph neural network of Euclidean spaces, which fuels a lot of researches on
introducing hyperbolic graph neural network into knowledge graph embedding.
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Table 1. Characteristic properties of Euclidean, and hyperbolic geometries [13].

Geometry Property

Euclidean Hyperbolic

Curvature K 0 < 0

Circle length 2πr 2π sinh
√|K|r

Disk area πr2 2π(cosh
√|K|r − 1)

More recently, several studies on KG completion and alignment reveal that low-
dimensional hyperbolic KG embeddings can represent knowledge graph effec-
tively and efficiently. AttH [5], which achieves state-of-the-art results on single
KG completion, utilizes hyperbolic geometrical operations (rotation and reflec-
tion) to learn KG’s structure and introduce attention mechanism to balance two
operations. Moreover, HyperKA [19] introduces hyperbolic translational embed-
dings within intra-view and train a hyperbolic transformation to capture the
cross-link associations. Although these two works demonstrate that embedding
knowledge into hyperbolic space can partly improve the performance of KG
completion and entity typing, joint KGE learning in hyperbolic space is still an
unexplored issue, which is exactly the focus of this paper.

3 Problem Formulation and Background

3.1 Problem Formulation

We define the entity graph as Ge = {Ee,Re,Fe} and the concept graph as Gc =
{Ec,Rc,Fc}. The entity graph Ge and the concept graph Gc are two completely
independent graphs, where Ee,Re are the sets of entities and relations and Ec,Rc

are the sets of concepts and meta-relations. Correspondingly, we represent the
entity triples and concept triples as (he, re, te) ∈ Fe and (hc, rc, tc) ∈ Fc, and
the cross-view triples as (he, tc) ∈ Fcross. Formally, the task of two-view KGE
is to represent the embeddings of entities e, relations re, concepts c and meta-
relations rc, which are represented by the boldfaced e, re, c and rc, respectively.
In order to train and evaluate the model, three triples sets (Fe, Fc, Fcross) are
split into FTrain, FV alid and FTest, respectively. Embeddings are optimized by
the scoring function f(, , ), which measures the plausibility of facts.

3.2 Preliminaries on Hyperbolic Geometry

Hyperbolic space is a space with constant negative curvature. As shown in
Table 1, non-zero curvature makes hyperbolic geometry different from tradi-
tional Euclidean geometry. It can be seen as the calculated metrics of the circle
length and the disk area that the hyperbolic geometric space increases exponen-
tially. This property allows hyperbolic space to provide greater spatial capacity
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under the same dimensional constraints, which is particularly suitable for form-
ing hierarchies. Further, to facilitate the gradient descent operation, we choose
the Poincaré ball model [4] as hyperbolic geometric equivalent model in this
paper. Particularly, a n-dimensional Poincaré ball with negative curve −c (c > 0)
is defined as a mainfold B

n
c = x ∈ R

n : c‖x‖ < 1, and we set c = 1 to simplify our
work following [18]. Some hyperbolic geometry in this n-dimensional mainfold
B

n
1 are introduced below.

Möbius Addition and Hyperbolic Distance. Given two nodes u,v ∈ B
n
1 ,

the Möbius addition provides an analogue to Euclidean addition for hyperbolic
space, which is:

u ⊕ v =
(1 + 2〈u,v〉 + ‖v‖2)u + (1 − ‖u‖2)v

1 + 2〈u,v〉 + ‖u‖2 + ‖v‖2 (1)

Further, the hyperbolic distance on B
n
1 between u and v is given by:

dBn
1
(u,v) = 2 tanh−1(‖ − u ⊕ v‖) (2)

Transformation. The logarithmic map log0() maps the mainfold B
n
c to the

tangent space T0B
n
c at the origin 0, where T0B

n
c is a n-dimensional Euclidean

space for Bn
c , i.e. T0B

n
c = R

n [1] . Conversely, the exponential map exp0() projects
T0B

n
c onto B

n
c at the origin. Specifically, for each point u ∈ B

n
1 ,y ∈ T0B

n
c , these

maps are formulated as:

log0(u) = tanh−1(‖u‖)
u

‖u‖
exp0(y) = tanh(‖y‖)

y
‖y‖

(3)

With such two inverse maps, hyperbolic space can apply analogous Euclidean
operations. Specifically, through mapping the hyperbolic vectors to the tangent
space with logarithmic map, the Euclidean linear matrix-vector multiplication
can be applied to the transformation matrix M, and then the transformed vec-
tors can be projected back on another mainfold with exponential map. This
transformation that projects a vector u ∈ B

n
1 into B

m
1 [19] is denoted as Möbius

matrix-vector multiplication:

M ⊗ u = exp0(M log0(u)) (4)

4 Methodology

In this section, we present our model HyperJOIE—a two-view hyperbolic KGE
method with jointly learning entities and concepts. Figure 2(a) demonstrates the
framework of HyperJOIE which consists of two components: intra-view struc-
ture encoder and cross-view attention association. In the following, we describe
the two modules in details.
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Fig. 2. (a) is the framework of HyperJOIE which first encodes intra-view KGs and then
associates entities and concepts with aggregated hyperbolic attention representation.
(b) is the framework of hyperbolic attention associations.

4.1 Intra-view Model

The goal of the intra-view model is to encode two independent KGs into two
embedding spaces while preserving original structural information. Since hierar-
chical structures do not only appear in concept mapping, we use an advanced
hyperbolic single-view model AttH [5] to represent the entity and concept graph
respectively, so as to represent the hierarchical relations inside both KGs. In the
following, we describe the AttH model.

AttH utilizes two kinds of hyperbolic isometries—rotations and reflec-
tions, to respectively model compositions and anti-symmetric relations. Θr :=
(θr,i)i∈{1,...n2 } are rotation parameters and Φr := (φr,i)i∈{1,...n2 } are reflection
parameters, where n is the embedded dimension. Through 2 × 2 transformation
matrices G±(θ), AttH parameterizes rotation and reflection with the form of a
block-diagonal matrices as Rot(Θr) and Ref(Φr). Then it applies relation-specific
rotations and reflections to the head embedding (Eq. 6), using H represent the
embeddings in the Hyperbolic space.

Rot(Θr) = diag(G+(θr,1), . . . , G+(θr,n2
)),

Ref(Φr) = diag(G−(φr,1), . . . , G−(φr,n2
)),

where G±(θ) :=
[

cos(θ) ∓ sin(θ)
sin(θ) ± cos(θ)

]
.

(5)

qH
Rot = Rot(Θr)uH

h , qH
Ref = Ref(Φr)uH

h (6)

In order to balance the combination of rotations and reflections, AttH takes
advantage of the convenience of attention calculation in tangent space. It projects
hyperbolic representations to tangent space representations uE = log0(uH) to
gets attention weights αu, αv, and then gets a weighted average combination as:

(αu, αv) = Softmax(aTuE ,aTvE) (7)
Att(uH ,vH ;a) = exp0(αuuE + αvvE) (8)
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After combining two hyperbolic geometric representations (qH
Rot and qH

Ref),
AttH utilizes a hyperbolic translation to get the translated head embedding
Q(h, r). Finally, based on the hyperbolic distance, the score function compares
the translated head embeddings to the target tail embeddings (Eq. 10).

Q(h, r) = Att(qH
Rot,q

H
Ref;ar) ⊕ rH (9)

f(h, r, t) = −dB(Q(h, r), tH)2 + bh + bt (10)

where (bu)uεE are node biases which act as margins in the scoring function [1,5].
Then, the intra-view component is trained by minimizing the full cross-entropy
loss, with negative samples:

Lintra =
∑

t′∼U(E)
log(1 + exp(y′

tf(h, r, t′)))

where y′
t =

{
−1 if t′ = t

1 otherwise

(11)

4.2 Cross-View Model

The cross-view model component aims at modeling the associations between
entity graph and concept graph. Figure 2(b) demonstrates the framework of
hyperbolic cross-view attention associations. We take the concepts and entities
embeddings encoded by the intra-view component as input, and then aggregate
the latent information with hyperbolic attention mechanism for concepts and
entities respectively. Finally, the hyperbolic knowledge association is adopted to
associate the aggregated entities and aggregated concepts. Next, we introduce
the hyperbolic attention mechanism and the hyperbolic knowledge association
in details.

Hyperbolic Attention Mechanism. The attention mechanism is helpful to
capture the high-order proximity of nodes based on local neighborhood informa-
tion. Based on this, we utilize hyperbolic attention mechanism to aggregate the
latent representations. Inspired by the recent proposal of HAT [24], we perform
the self-attention mechanism on the nodes to capture the deep cross-view inter-
actions. The attention value αij indicates the importance of node j to node i,
which is measured by the hyperbolic distance from node i to node j. Given two
nodes ui,uj ∈ B

n
1 , the attention weight αij is computed as:

αij = −dB(ui,uj)

= − tanh−1(| − ui ⊕ uj |)
(12)

According to HAT [24] using hyperbolic distance to measure attention
weights can not only preserve the structure transitivity among nodes but also
maintain the original characteristics of the nodes. This is because the attention
weight of a node to itself is αii = −d(ui,ui) = 0 meaning that a node is always
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the nearest point to itself among its neighbors. Moreover, the relative attention
weights wij is calculated by softmax function over all the neighbors of node i
(including itself) to get the normalized values:

wij =
exp(αij)∑

kεNi
exp(αik)

(13)

The aggregated representation −→ui is a linear combination of the normalized
weights wij and the latet representations of all the nodes jεNi, which is denoted
as follows:

−→ui = σ(
∑⊕

jεNi

wij ⊗ uj) (14)

where the
∑⊕

jεNi
is the accumulation of Möbius addition. Different from HAT,

HyperJOIE adopts TanH as the nonlinearity function σ and calculates the
weighted sum by the Möbius scalar multiplication. Formally, given the weight
wij ∈ R of the node ui ∈ B

n
1 , the weighted sum is denoted as:

wij ⊗ ui = tanh(wij tanh−1(‖ui‖))
ui

‖ui|
(15)

In addition, with the help of the logarithmic map, we transform the weighted
representation wij ⊗ ui into the tangent space, where we can utilize the linear
combination as in the Euclidean spaces, i.e.

∑
j∈Ni

log0(wij ⊗uj) [6]. After that,
we use the exponential map to project the representation back to the hyperbolic
space, simplifying the final representation as follows:

−→ui = σ(exp0(
∑

jεNi

log0(wij ⊗ uj))) (16)

Hyperbolic Knowledge Association. Given a pair of cross-link triples
(e, c) ∈ Fcross, we firstly utilize the Möbius transformation to project the aggre-
gated entity −→e to the concept embedding space. For each cross-link triple, we
hope the transformed aggregated entity vector close to the aggregated concept
vector −→c in concept embedding space, so we choose the hyperbolic distance to
design the scoring function. Inspired by [1], we add the biases of entity be ∈ R

and the biases of concept bc ∈ R to manifest the margins among instantiated
entities of the same concept. Finally, we define the basis score function for the
cross-view attention association as follows:

f(e, c) = −dB(M ⊗ −→e ,−→c ) + be + bc (17)

where M ∈ Rn×m transforms the hyperbolic vectors from B
n
1 to B

m
1 .

We choose the full cross-entropy loss with uniform negative sampling to train
cross-view component, where the negative triples are sampled uniformly from all
possible triples by perturbing the tail concept. The cross-view attention associ-
ation loss is given as:
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Lcross =
∑

c′∼U(Ec)

log(1 + exp(yc′f(e, c′))),

where y′
c =

{
−1 if c′ = c

1 otherwise

(18)

4.3 Loss Function and Training

The total loss is the combination of the intra-view component and the cross-view
component, which is defined as follows:

L = LGe
intra + LGc

intra + Lcross (19)

In order to avoid the challenging optimization in hyperbolic space, we define
all parameters in the tangent space at the origin and optimize parameters with
the Adam optimizer [12]. The parameters can be recovered to the hyperbolic
space with the exponential map [5]. We follow a two-step training procedure: For
one epoch, (1) first train our intra-view component LGe

intra and LGc
intra respectively

and then (2) optimize the cross-view loss Lcross in the successive step.

5 Experiments

5.1 Experimental Setup

Datasets. We use two benchmark datasets for evaluation: YAGO26K-906 and
DB111K-174 [10], which are extracted from YAGO and DBpedia, respectively.
Each dataset includes entity graph, concept graph and cross-view links. Table 2
provides statistics of all datasets used. We use the data splits provided by [10]
in order to compare with previous work.

Evaluation Metrics. During the test, we use different scoring function to test
different tasks. Specifically, we use Eq. 10 for intra-view task and Eq. 17 for cross-
view task. Similar to previous work, we compute two ranking-based metrics: (1)
mean reciprocal rank (MRR) and (2) hits at K (H@K,K ∈ 1, 3, 10). Following
previous standard evaluation protocol [2], we filter out all true triples from the
dataset to put penalty on the true triples which are predicted with low rankings.

Hyper-Parameter Settings. As for the hyper-parameters, we conduct a
grid search to detect the learning rate and batch size, using the validation
set to select the best hyper-parameters. We search the learning rate among
{0.00005, 0.0001, 0.0002, 0.0005}, and batch size among {200, 1000, 2000, 5000}.
The optimal configurations are as follows: On YAGO26K-906, the learning rate
α = 0.0001 and batch size B = 1000; while on DB111K-174, the learning rate
α = 0.0001 and batch size B = 5000.
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Table 2. Statistics of datasets.

Datasets # Nodes # Rel # Triples # Cross-links

YAGO26K-906 Ent 26,078 34 390,738 9,962

Cpt 906 30 8,962

DB111K-174 Ent 111,762 305 863,643 99,748

Cpt 174 20 763

Table 3. KG completion results

Dataset YAGO26K-906 DB111K-174

Entity Concept Entity Concept

Metrics MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TransE(base) 0.195 0.141 0.345 0.145 0.123 0.206 0.327 0.223 0.490 0.313 0.232 0.469

TransE(all) 0.189 0.137 0.350 0.189 0.147 0.244 0.318 0.227 0.481 0.539 0.479 0.618

DistMult(base) 0.253 0.229 0.288 0.197 0.177 0.251 0.265 0.256 0.276 0.235 0.152 0.291

DistMult(all) 0.288 0.240 0.312 0.156 0.143 0.165 0.280 0.272 0.297 0.501 0.455 0.647

HolE(base) 0.265 0.259 0.283 0.192 0.187 0.203 0.301 0.292 0.315 0.227 0.189 0.328

HolE(all) 0.252 0.242 0.266 0.138 0.113 0.114 0.290 0.287 0.303 0.432 0.388 0.560

RotatE(base) 0.652 0.563 0.806 0.252 0.185 0.376 0.435 0.372 0.550 0.506 0.422 0.669

RotatE(all) 0.567 0.465 0.753 0.304 0.234 0.436 0.337 0.287 0.427 0.445 0.377 0.552

AttH(base) 0.667 0.589 0.804 0.250 0.199 0.344 0.425 0.348 0.566 0.520 0.429 0.701

AttH(all) 0.610 0.519 0.549 0.262 0.203 0.380 0.372 0.309 0.595 0.475 0.403 0.675

TransC 0.252 0.157 0.378 − − − 0.359 0.248 0.493 − − −
JOIE 0.327 0.224 0.524 0.263 0.209 0.385 0.473 0.338 0.714 0.622 0.581 0.797

HyperKA 0.314 0.161 0.613 0.269 0.169 0.429 0.302 0.147 0.387 0.241 0.200 0.447

HyperJOIE(no att) 0.735 0.683 0.826 0.523 0.413 0.739 0.635 0.584 0.729 0.725 0.645 0.870

HyperJOIE(with att) 0.745 0.697 0.830 0.587 0.497 0.761 0.708 0.656 0.804 0.768 0.667 0.906

5.2 KG Completion

Baselines. Although lots of methods contribute on single-view KG completion,
only a few methods have been applied to the two-view KG completion task with
jointly learning entities and concepts. In this work, we compare HyperJOIE to
SotA single-view KGE model AttH [5], SotA two-view KGE method JOIE [10],
SotA two-view KG alignment method HyperKA [19] and five other baseline
methods TransE [2], DistMult [23], HolE [16], TransC [14] and RotatE [20]. For
JOIE, we take its best performance for fair comparison. For the other baselines,
we set the entity dimension n to 300 and the concept dimension m to 50. We also
tried to set higher dimensions, but we did not observe further improvements.

Ablations. To analyze the benefits of hyperbolic joint framework, we follow
the JOIE which deploys two variants of AttH: (1) We train each indepen-
dent knowledge graph separately without cross-view associations, denoted as
(base); (2) We train all triples in FTrain

e , FTrain
c and FTrain

cross , denoted as (all).
Moreover, to evaluate the role of hyperbolic attention in the intra-view compo-
nent, we report scores for variants of HyperJOIE training cross-view associations
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only with hyperbolic transformation, denoted as (no att). Furthermore, we re-
evaluate the intra-view KG completion performance of HyperKA [19] to estimate
the intra-view embedding ability of the SotA entity typing method.

Results and Discussion. We report the KG completion results in Table 3. As
can be seen from Table 3, HyperJOIE outperforms all the other methods. Com-
pared with the linear embedding methods (TransE, DistMult, HolE, TransC
and JOIE ) in Euclidean space and RotatE [20] in the complex space, Hyper-
JOIE is extremely dominant regarding the performance. For example, the H@1
score of HyperJOIE on entity graph of YAGO26K-906 reaches 0.697, surpassing
JOIE by 0.473 and RotatE by 0.134. Also, compared with hyperbolic single-
view KGE model, HyperJOIE also achieves better performance on both entity
graph and concept graph. Specifically, HyperJOIE improves AttH by 0.108 and
0.238 in H@1 on entity and concept graph completion of YAGO26K-906 respec-
tively. This illustrates that hyperbolic projections for cross-view associations
can enhance the embedding representation of the intra-view graphs, especially
in concept graph. In addition, we evaluate the performance of HyperJOIE with-
out hyperbolic attention association HyperJOIE(no att). We find that the ver-
sion with hyperbolic attention associations HyperJOIE(with att) shows slight
improvement. This indicates that the hyperbolic attention mechanism also con-
tributes to the representation of the intra-view KGs. Moreover, by comparing
the performance of AttH and HyperKA on KG completion task, we find that
even the SotA entity alignment approach is still lacking in terms of intra-view
KGs, which demonstrates the importance of intra-view structure encoder.

5.3 Entity Typing

Baselines. We compare our method with the SotA entity typing methods (JOIE
and HyperKA), entity alignment method MTransE [8], and five other single-
view KGE methods, i.e. TransE [2], DistMult [23], HolE [16], TransC [14] and
RotatE [20]. The dimension settings are same as Sect. 5.2.

Ablations. We deploys two variants of intra-view structure encoder to detect
the impact of single-view KGE methods with different learning abilities on cross-
view association: (1) We randomly initialize the embedding of entities and con-
cepts without any intra-view structure modeling, denoted as (basic); (2) We
transpose TransE [2] into hyperbolic space as encoder, denoted as (simple).
Additionally, to verify the effect of hyperbolic association on cross-view links,
we consider an alternative of our method without hyperbolic attention mecha-
nism, denoted as (no att).

Results and Discussion. As shown in Table 4, we observe that HyperJOIE
outperforms both HyperKA and JOIE on MRR and H@1 on YAGO26K-906
in entity typing task. However, on the DB111K-174, our method is only 0.007
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Table 4. Entity typing results

Dataset YAGO26K-906 DB111K-174

Metrics MRR H@1 H@3 MRR H@1 H@3

TransE 0.144 0.073 0.353 0.503 0.437 0.608

DistMult 0.411 0.361 0.553 0.551 0.680 0.551

HolE 0.395 0.348 0.548 0.504 0.654 0.504

RotatE 0.479 0.429 0.507 0.382 0.309 0.434

AttH 0.476 0.430 0.502 0.498 0.447 0.535

MTransE 0.689 0.609 0.776 0.672 0.599 0.813

JOIE 0.897 0.856 0.959 0.857 0.756 0.959

HyperKA 0.913 0.871 0.948 0.863 0.789 0.927

HyperJOIE(basic no att) 0.534 0.398 0.594 0.470 0.336 0.558

HyperJOIE(basic with att) 0.804 0.733 0.853 0.546 0.407 0.637

HyperJOIE(simple no att) 0.598 0.450 0.666 0.646 0.507 0.749

HyperJOIE(simple with att) 0.836 0.765 0.890 0.651 0.523 0.745

HyperJOIE(no att) 0.870 0.806 0.922 0.735 0.642 0.887

HyperJOIE(with att) 0.916 0.880 0.942 0.846 0.782 0.907

less than the SotA HyperKA on the MRR metric. To estimate the impact of
different intra-view structure encoder, we compare HyperJOIE (basic no att),
(simple no att) and (no att), and find that HyperJOIE(no att) achieves the best
performance. This illustrates that high-quality intra-view embedding is beneficial
for cross-view associations.

To further evaluate the role of hyperbolic attention and hyperbolic asso-
ciation, we compare HyperJOIE(with att) with AttH and HyperKA on entity
typing task, and find that HyperJOIE is superior to both hyperbolic KGE meth-
ods on YAGO26K-906, i.e. the H@1 metric of our methods surpasses HyperKA
by 0.009 and surpasses AttH by 0.450 in YAGO26K-906. As for the compari-
son between (no att) and (with att), we can see that hyperbolic attention can
enhance entity typing performance.

Further, to figure out the reasons of the poor performance of the hyperbolic
attention mechanism on the DB111K-174, we compare the two datasets and
find that the concept graph of DB111K-174 is too small and spare to provide
enough latent neighbor information. The concept graph only has 763 triples
(8,962 in YAGO26K-906) and an average of 4.38 triples per concept (9.89 in
YAGO26K-906). But for a relatively complete concept graph, hyperbolic atten-
tion can significantly empower knowledge associations of the two-view KG.

5.4 Case Study

For case study, we visualize the attention weights of “J.K. Rowling”’s neighbors
in DB111K-174 dataset as an illustrative example of the hyperbolic attention.
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J.K. 
Rowling

J.K. 
Rowling

Harry 
Potter
(film)

United 
Kingdom

University 
of Exeter

Lloyd 
Alexander

(a) “J.K. Rowling”’s neighbors (b) Neighbors’ weights

Fig. 3. Neighbors of “J.K. Rowling” and its attention weights

As shown in Fig. 3(a), “J.K. Rowling” has 4 neighbors, and the types of nodes
are identified by its colors. From Fig. 3(b), we observe that “J.K. Rowling” gets
highest weight and “Lloyd” gets the second attention weight. This means the
hyperbolic attention mechanism can capture the type information.

6 Conclusion and Future Work

We propose a novel hyperbolic two-view knowledge graph embedding method
with hyperbolic attention associations, which is the first attempt to explore
two-view KGE in hyperbolic space. Our method almost surpasses SotA base-
lines on both KG completion and entity typing. Our future work will explore
the application of a hyperbolic joint learning framework to multi-modal graph
representation learning.
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