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Abstract—Schema Matching (SM) and Record Matching (RM) are two necessary steps in integrating multiple relational tables
of different schemas, where SM unifies the schemas and RM detects records referring to the same real-world entity. The two
processes have been thoroughly studied separately, but few attention has been paid to the interaction of SM and RM. In
this work we find that, even alternating them in a simple manner, SM and RM can benefit from each other to reach a better
integration performance (i.e., in terms of precision and recall). Therefore, combining SM and RM is a promising solution for
improving data integration. To this end, we define novel matching rules for SM and RM respectively, that is, every SM decision
is made based on intermediate RM results, and vice versa, such that SM and RM can be performed alternately. The quality of
integration is guaranteed by a Matching Likelihood Estimation model and the control of semantic drift, which prevent the effect of
mismatch magnification. To reduce the computational cost, we design an index structure based on q-grams and a greedy search
algorithm that can reduce around 90% overhead of the interaction. Extensive experiments on three data collections show that the
combination and interaction between SM and RM significantly outperforms previous works that conduct SM and RM separately.
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1 INTRODUCTION

Due to the data explosion in the big data era, the in-
consistency between data sources becomes a critical issue
in two dimensions: schema-level inconsistency and tuple-
level inconsistency. As a result, merging data from multiple
relational databases requires two necessary steps, namely
Schema Matching (SM) and Record Matching (RM), in
order to achieve a uniform and consistent data view. Here,
SM unifies the schemas of different data sets; while RM
finds pairs of linked records referring to the same entity.

There have been a host of works on SM or RM (see [28]
or [14] for a survey). Briefly, the state-of-the-art SM
method considers both the similarity (or semantic correla-
tion) between the attribute names [20] and the similarity
between the set of attribute values (or selected/sampled
subsets of attribute values) under the two attributes [29];
while the most advanced RM methods inspect linguistic
similarities and structural/relational similarities [3], [30]
between key attribute values [4] or indicative non-key
attribute values [35] when deciding the matching records
among data sets, where key attribute is the one that can
uniquely determine a record in a relational table while all
the others are non-key attributes. Recently, external domain
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knowledge and human interventions are also employed to
improve the quality of SM [12] or RM [21].

All existing efforts, however, consider the two tasks
independently, that is, they first perform SM, and then
perform RM subsequently in only one run, which do not
pay any attention on the possible interaction between SM
and RM in the data integration process. This strategy
inevitably gives us only one chance to make decisions, and
deprives us further chances to update the links when more
and more valuable information is collected from the other
task. As a result, these SM and RM methods may easily
make wrong decisions without further refined updates.
Besides, there are two critical issues with existing works:
(1) Existing instance-based SM methods rely heavily on the
assumption that the distributions of attribute values under
linked attributes should be similar to each other; otherwise
it will suffer from low similarity between selected subsets
of attribute values with the attributes should be linked, such
as the situation in which only a small part of records are
shared by the two data sets. (2) The RM linking results are
greatly determined by SM linking results. As a result, both
missed attribute-pairs and mistaken attribute-pairs would
degrade the quality of RM linking results.

We study in this paper the interaction between SM and
RM, by performing them alternately for data integration.
To achieve this, novel matching rules are proposed: at each
RM step, we identify a set of highly possible matching
record-pairs based on the already linked attribute-pairs;
Likewise, at each SM step, we identify a set of highly-
possible matched attribute-pairs based on the already linked
record-pairs. For instance, assume a start-up linked key
attribute-pairs (Product,Product) between the two tables
in Fig. 1 (a), at the first RM step, we may identify
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Fig. 1. Two Example Tables for Integration (a) and the Integration Results with Previous Methods ((b) and (c))

(t1 ↭ s1) and (t2 ↭ s2) as linked records as they share
the same Product values. We then identify (Weight,WT)
as linked attribute-pair given that the two linked records
share the same value under the two attributes. We re-
peat this process iteratively until no more attributes or
records can be linked. Finally, we will have all the four
attribute-pairs and six record-pairs be correctly linked as
demonstrated in Fig. 2. By contrast, traditional methods
perform SM and RM in only one run, which as a re-
sult introduce (Ex − Memory ↭ ROM) and (t4 ↭ s8) as
wrong matches, and also miss pairs (Size ↭ Screen

Size)(t3 ↭ s3), (t4 ↭ s4), (t5 ↭ s5) and (t6 ↭ s6)
as matched pairs with similarities and thresholds given in
Fig. 1(b)(c), where the similarities between attribute values
are measured by Levenshtein similarity. Instance-based SM
methods in [13], [23] also use instances to facilitate SM.
However, the instance-pairs are not from the results RM
steps, and thus could be wrongly selected from mismatched
attributes such as ROM and Memory in Figure 1 due to the
similar values they have.

Nevertheless, the interaction model raises two challeng-
ing issues: Firstly, new linking decisions made at each
SM (or RM) step based on intermediate RM (or SM)
results should be reliable. Otherwise, they may lead to
mistaken linking decisions in later stage. Secondly, the
potential semantic drift in the interaction process should
be controlled to prevent mismatch magnification in the
subsequent iterations. Both of the two issues are crucial
to the quality of the matching results.

To address the two problems, we design a probabilis-
tic model to estimate the Matching Likelihood of each
matching-record-pair. In particular, we first measure each
individual attribute’s ability to identify matching-record-
pairs, and then estimate the likelihood of each matching-
record-pair by jointly considering the identification ability
of multiple attributes. The key difficulty lies on how to
calculate the dependencies between attributes. A traditional
model based on Inclusion-Exclusion principle [6] estimates

the matching likelihood by calculating the dependencies
between attributes comprehensively, but the computation
cost grows exponentially with n (the number of attributes
in a table). Another famous model Noisy-All [1], [25]
completely neglects the dependencies between attributes
for efficiency, with a sacrifice of estimation accuracy.
To reach a balance between accuracy and efficiency, we
propose a novel combination model which employs the
logistic sigmoid function [5] to simplify the function of
calculating the dependencies among the attributes into a
linear one. Besides, to prevent from the semantic drift issue,
we introduce different strategies to check the correctness
of each matching-record-pair and matching-attribute-pair
respectively. One checks the degree of deviation of every
matching-record-pair from the other matching-record-pairs
according to the unbiased variance [33], while the other
employs cross-validation to use matching attribute-pairs to
validate each other.

Computational cost is always an issue when comparing
a large number of attribute value pairs in RM and SM.
According to our analysis, without any optimizations, the
computational complexity of the interaction algorithm can
be as high as O(min(p, q)mn), where m and n are
the numbers of records in the two tables for integration
respectively, and p and q are the number of attributes in the
two tables respectively. To reduce the high computational
cost, we design an index structure based on q-grams [34]
to index all possible matched record-pairs w.r.t. a single
attribute. Potentially matchable record-pairs between the
two tables are grouped into (possibly overlapped) blocks
such that matching-record-pairs are only identified within
one block. We then propose a greedy algorithm selecting
only one block at a time from all blocks, which brings the
maximum benefit (i.e., linking the most matching-record-
pairs or matching-attribute-pairs at the next step) with the
minimum cost (i.e., comparing the least attribute values).
After each step, the algorithm updates the indices and does
the greedy block selection again until no more blocks left.
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Fig. 2. Example Interaction Workflow of SM and RM for Integrating Tables in Fig. 1

Our main contributions are summarized as follows:
1) We first study the combination and interaction between

SM and RM by performing them alternately when
integrating multiple data sources. Novel matching rules
are proposed as the foundation of the combination.

2) We design a probabilistic model based on the logistic
sigmoid function to estimate the Matching Likelihood
of a matching pair. Our model can be adopted to the
situation with small overhead when many incidents are
dependent, since a parameter acts on the logistic sigmoid
function to smooth the dependency among attributes.

3) We propose two effective ways to check the correctness
of each matching pair. One uses unbiased variance of
the similarity between the attribute values pairs of the
two records, while the other employs cross-validation to
use all matching pairs to validate each other.

4) We greatly reduce the time complexity of the interaction
algorithm by around 90% with a special-designed index
structure and several optimization techniques proposed
based on the index structure.

The rest of the paper is organized as follows: We give
an overview of the interaction in Sec. 2. We discuss on the
matching likelihood estimation scheme in Sec. 3, and then
present how we control the integration quality in Sec. 4.
The optimization on efficiency is given in Sec. 5. After
reporting the experiments in Sec. 6, the related work is
covered in Sec. 7. We conclude in Sec. 8.

2 INTERACTION OVERVIEW

Given two relational tables T1 = {t1, t2, ..., tn} under
schema S1 = {A1,A2, ...,Ap} and T2 = {s1, s2, ..., sm}
under schema S2 = {B1,B2, ...,Bq}, where n,m, p, q are
positive integers, ti (1 ≤ i ≤ n) denotes a record in T1,
si (1 ≤ i ≤ m) denotes a record in T2, Ai (1 ≤ i ≤ p)
denotes an attribute in T1, and Bi (1 ≤ i ≤ q) denotes an
attribute in T2, assume S1 ∩ S2 ≠ ∅, i.e., the two tables
have common attributes, T1 ∩ T2 ≠ ∅, i.e., the two tables
have records referring to the same real-world entity, the
two fundamental tasks of Data Integration1 is to perform
Schema Matching (SM) between S1 and S2, and Record
Matching (RM) between T1 and T2: While the objective
of SM is to unify S1 and S2 by finding out all pairs of
attributes (Ai,Bj) between S1 and S2, where each attribute-
pair refers to the same property of the records, or denoted
as (Ai ↭ Bj), the object of RM is to find out all pairs of
records (ti, sj) referring to the same entity, or denoted as
(ti ↭ sj), between T1 and T2. Here we assume that each
attribute in S1 matches with no more than one attribute

1. We present our interactive idea between two tables for ease of
presentation, and it is extendable to the integration of multiple tables.

in S2, and vice versa. Also, we assume that each record
in T1 matches with no more than one record in T2, and
vice versa. Besides, we do not consider the situation that
an attribute in one table corresponds to the combination of
several attributes in the other table.

The integration quality can be reflected in four dimen-
sions, i.e., Precision of SM, Recall of SM, Precision of RM,
and Recall of RM. In particular, the precision of SM is
the percentage of correctly matched attribute-pairs among
all matched attribute-pairs while the recall of SM is the
percentage of correct matching-attribute-pairs among all
matching-attribute-pairs that should be identified between
the two tables. Similarly, the precision of RM is the percent-
age of correct matching-record-pairs among all matching-
record-pairs while the recall of RM is the percentage of
correct matching-record-pairs among all matching-record-
pairs that should be identified between the two tables.

To implement data integration, existing work does SM
firstly and RM secondly in one run, but often fails to reach
a satisfied integration quality (that could be achieved). In
this paper, we work on the interaction between SM and
RM in the process of performing them alternately, with
the expectation that the interaction can provide us further
chances to improve the integration quality. For easier pre-
sentation, we use IntSRM to denote the interaction process.
In the following, we first use an example to demonstrate
how we perform SM and RM alternately in Sec. 2.1, and
then formally state the problems in Sec. 2.2.

2.1 Basic Interaction Scheme

The basic interaction process is described as follows: start-
ing with seed linked attribute-pairs, we perform SM and
RM in turn to detect linked attributes or linked records
iteratively until no more links can be detected. While every
RM step identifies more linked entities to help the next SM
step find more not yet linked attribute-pairs, every SM step
detects more linked attribute-pairs to benefit the followed
RM in finding more not yet linked record-pairs.

Briefly, a RM matching is made based on temporary
attribute-pairs that are already linked, and an SM matching
is made based on temporary instance pairs that are already
linked. More specifically, we describe the two rules below:

Rule 1: (Linked-Attributes-based RM). Given linked
attribute-pairs {(Al1 ↭ Bl1 ), (Al2 ↭ Bl2), ..., (All ↭ Bll)}
between S1 and S2 in integrating T1 with Schema S1 and
T2 with schema S2, we say whether a record-pair t ∈ T1 and
s ∈ T2 will be linked (temporarily) in the next RM step is
determined jointly by the similarity between the pair (t[Ai],
s[Bi]), and the ability of (Ai,Bi) in recognizing matching-
record-pairs, where i ∈ {l1, l2, ..., ll}.
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Basically, the more attribute values the two records share
under matching-attribute-pairs and the stronger the ability
of these matched attribute-pairs in recognizing matching-
record-pairs, the more likely that the two records can be
a matching-record-pair referring to the same entity. For
example in Fig. 1, given linked attributes (Weight↭ WT)
and (SIZE ↭ Screen). Assume the two attributes can
effectively differentiate a record from the others, we may
produce a record-pair (t4 ↭ s3), since it shares the same
“Weight or WT” and “SIZE or Screen” values.

Rule 2: (Linked-Records-based SM). Given linked
record-pairs {(tl1 ↭ sl1), (tl2 ↭ sl2), ..., (tll ↭ sll)}
between T1 and T2 in integrating T1 with Schema S1 and
T2 with schema S2, we say whether an attribute-pair A ∈ S1
and B ∈ S2 will be linked (temporarily) in the next SM step
is determined jointly by the similarity between each (ti[A],
si[B]) pair, where i ∈ {l1, l2, ..., ll}.

The more record-pairs support the matching of the two
attributes, the more likely that they should be matched pairs.
If this situation is observed with several pairs of linked
records between two tables, there will be a high matching
likelihood that the two attributes actually refer to the same
one. For example in the two tables in Fig. 1, Weight and WT

might be linked since they share the same attribute values
under several record-pairs like (t1, s1) and (t2, s2).

Based on the two matching rules above, the interac-
tion scheme can be simply represented by a sequence
of attribute/record-pair set. Let PSi = {(Ai,1 ↭ Bi,1),
(Ai,2 ↭ Bi,2), ...} denote the attribute-pair set identified at
the i−th SM step, and PRi = {(ti,1 ↭ si,1), (ti,2 ↭ si,2),
...} denote the record-pair set identified at the i−th RM step,
an interaction scheme between T1 and T2 can be denoted
as

Q = ⟨PS0 ,PR1 ,PS1 ,PR2 ,PS2 , ...,PRk ,PSk , ...⟩

, where ∀i ≠ j,PSi ∩PSj = PRi ∩PRj = ∅.
We now describe a basic interaction workflow between

SM and RM with an example scenario in Fig. 2.
Example 1: Initially, we have PS0 = {(Product ↭

Product)}, according to which we can match (t1 ↭ s1)
and (t2 ↭ s2). Then, we find that the two matched
records share the same values under (WT,Weight) and
(SIZE,Screen). Thus, (WT ↭ Weight) and (SIZE ↭
Screen) can be our newly-linked attribute-pairs. Until now,
we would have three attribute-pairs, according to which
we can find a new record-pair (t4 ↭ s3), given that
the three matching-attribute-pairs support this record-pair.
Next, since t4[CAMERA] equals to s3[BackCam] rather than
s3[FontCam], we may have (CAMERA ↭ BackCam). We
continue with RM and SM alternatively in this way to have
(t5 ↭ s4) and (ROM↭ Memory).

2.2 Problems Statement
There are several crucial issues in the interaction workflow.
Firstly, the way of estimating the matching likelihood of
an attribute-pair (or a record-pair) is the key factor to
ensure the matching quality. As we mentioned in Rule 1,
the matching likelihood between two records depends on

two aspects, i.e., the number of linked attribute-pairs that
support the matching, and the ability of the linked attribute-
pair in recognizing matching-record-pairs. Therefore, the
matching likelihood issue can be resolved by one sub-
task of estimating the ability of the linked attribute-pairs
in recognizing records referring to the same entity, and
the other more challenging sub-task: how to combine the
contributions from multiple attribute-pairs to the calculation
of matching likelihood of the two concerned records. We
will give our solution to this problem in Sec. 3.

Second, “semantic drift” problem should be controlled
for preventing the mistake magnification from an SM (or
RM) step to the following RM (or SM). The linking deci-
sions made at each SM (or RM) step based on temporary
RM (or SM) results should be validated. We will discuss
the details of matching quality control in Sec. 4.

Last but not the least, the large overhead produced by
comparing a large number of value pairs should be reduced.
Our analysis shows that, without any optimizations, the
computational complexity of the interactive algorithm can
be as high as O(min(p, q)mn), where m and n are
the number of records in the two tables for integration
respectively, and p and q are the number of attributes in
the two tables respectively. Sec. 5 will introduce how to
reduce the computational cost.

3 MATCHING LIKELIHOOD ESTIMATION
We present the models for estimating the matching likeli-
hood for record-pairs and attribute-pairs respectively.

3.1 Matching Likelihood Estimation for RM
We provide a way to estimate the ability of the linked
attribute-pair in recognizing records referring to the same
entity, and then discuss how to combine the contributions
from multiple attributes to the matching likelihood of the
two concerned records.
1) IdC Score. We call the ability of an attribute A
in differentiating a record from the other records as the
Identification Confidence of the attribute A, denoted as
IdC(A). Basically, the IdC of an attribute can be learned
from a large training data set with a probabilistic model,
where the training data consisted of a set of labeled matched
pairs denoted as PosT and a set of labelled unmatched pairs
denoted as NegT . More specifically, we estimate the IdC
score of an attribute A based on a labeled training set from
its table as:

IdC(A) = PosT (A)
PosT (A) +NegT (A) (1)

where PosT (A) is the number of record-pairs matched
on attribute A among all labeled matched pairs in PosT ,
and NegT (A) is the number of record-pairs matched on
attribute A among all labeled unmatched pairs in NegT .

Given that two attributes, A from one table and B from
the other, are matched, the IdC of the attribute-pair A↭ B
denoted by IdC(A↭ B) can be estimated as:

IdC(A↭ B) =
√

[IdC(A)]2 + [IdC(B)]2
2

(2)
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Fig. 3. Comparison between Models for Illustration

2) Contributions Combination. Let {A ↭ B} = {(A1 ↭
B1), (A2 ↭ B2), ..., (An ↭ Bn)} denote the set of linked
attribute-pairs, we discuss on how to estimate the matching
likelihood of two records, say t ∈ T1 and s ∈ T2, based on:
(1) the similarity of the values under linked attribute-pairs
in s and t, denoted as sim(s[Ai], t[Bi]) (1 ≤ i ≤ n), and
(2) the IdC score of every linked attribute-pair (Ai ↭ Bi).

Two existing models are potentially usable for estimating
the matching likelihood of two records, but have limitations
discussed below.
(1) Inclusion-Exclusion: A classical way based on

the inclusion-exclusion principle [6] calculates the
matching likelihood of (t, s) as: LRM(t, s) =
n

∑
k=1

(−1)k+1P (Ψ(k,n, t, s)), where Ψ(k,n, t, s) is a

set containing all the k-size combinations generated
from the set of linked attribute-pairs, and P (⋅) is
the likelihood score of a set as: P (C1 ∩ ⋯ ∩ Ci) =
µ(C1∩⋯∩Ci) ⋅ ∏

i
j=1 IdC(Aj ↭ Bj) ⋅ sim(Aj ,Bj) ⋅

sim(t[Aj], s[Bj]), where Cj = Aj ↭ Bj and
µ(C1∩⋯∩Ci) is the dependency factor of {C1, ...,Ci},
which, however, needs to be estimated in advance.
Although this model can accurately estimate the match-
ing likelihood between two records by calculating the
dependencies between attributes comprehensively, the
computation cost grows exponentially with n.

(2) Noisy-All: The Noisy-All model [1], [25] is another
popular model that calculates the matching likelihood
as: LRM(t, s) = 1− ∏

(A↭B)∈{A↭B}
sim(t[A], s[B])⋅(1−

IdC(A↭ B)), which indicates that the likelihood esti-
mation is simplified by assuming all attributes are inde-
pendent. However, the dependency between attributes
should not be neglected in real practice. In addition,
the noisy-all model has the so called Accumulative-
Error problem: the matching likelihood of record-pairs
increases with the number of matched attributes. That
is to say, two records can be wrongly estimated to have
high matching likelihood even the similarity of values
under their linked attribute-pairs is low, just because
the number of matched attributes is high. For example,
even sim(t[Ai], s[Bi]) = 0.4, IdC( Ai ↭ Bi)) = 0.5
(1 ≤ i ≤ n) but n = 10, then LRM(t, s) = 0.9.

We propose a new model to take the advantages of both
the two models but addressing their limitations. Firstly,
instead of the comprehensive way to calculate the depen-
dencies among the attributes, we simplify the function into
a linear one with the logistic sigmoid function [5] and
then rely on only one parameter to control the influence
among the attributes, i.e. we use the logistic sigmoid
function to smooth the influence among the attributes for
matching records in an explicit way. Besides, to overcome
the Accumulative-Error problem, we define a contribution
function and employ a logarithmic function to map the
value from [0,1] into [0,+∞).

To achieve this, we first assume that all the IdC of
attributes are independent such that a linear model (similar
to Noisy-All) can be used to calculate the matching likeli-
hood, and then we compensate for the dependence between
attributes in the model by introducing a damping factor.
The matching likelihood of the record-pair (t, s) is then
calculated as:

LRM(t, s) = 1

1 + e−λ⋅S(A↭B,t,s) (3)

where λ is the damping factor to compensate for the
dependence between attributes (the parameter can be tuned
on a validation dataset), and S(A↭ B, t, s) is the overall
contribution score of the set of linked attribute-pairs {A↭
B} to the matching of the record-pair (t, s), computed as:

S(A↭ B, t, s) = ∑
(A↭B)∈{A↭B}

φ(A,B) ⋅ ctr(t[A], s[B])

(4)
where φ(A,B) ∈ [0,+∞) employs a logarithmic function
to map the value between 0 to 1 into the whole real axis
as:

φ(A,B) = −ln(1 −LSM(A,B) ⋅ IdC(A↭ B)) (5)

where LSM(A,B) is the matching likelihood of the two
attributes A and B. Finally, ctr(t[A], s[B]) is the contri-
bution of the similarity between two values t[A] and s[B]

ctr(t[A], s[B]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if t[A] = null or s[B] = null
sim(t[A],s[B])−θ

1−θ , if sim(t[A], s[B]) ≥ θ
sim(t[A],s[B])−θ

θ
, if sim(t[A], s[B]) < θ

(6)
where sim(t[A], s[B]) is the similarity between t[A]
and s[B] measured by string similarity function such as
edit distance, and θ is an expert-defined tipping point
to decide whether this value pair produces positive or
negative contributions. The contribution defined in Eq.
(6) resolves the issue of accumulative error when using
sim(t[A], s[B]) directly as contribution. That is, a large
but wrongS(A↭ B, t, s) score can be obtained by accumu-
lating small similarity sim(t[A], s[B]) of a large number
of attributes (A↭ B) in {A↭ B}.

To summarize, the proposed model has the following
two advantages: (1) it can be adopted to the situation
when the contributions of the linked attribute-pairs are
not independent with a low overhead; (2) it solves the
Accumulative-Error problem. As can be observed in the
comparison of LRM curve between the Noisy-All model
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and our model in Fig. 3, the Noise-all LRM curve is abrupt
and changes largely when x is small, while our LRM curve
is smooth and responds to a large span of x. In addition,
our model does not introduce negative values like Noisy-All
model when adopting Eq. (6).

3.2 Matching Likelihood Estimation for SM
We now present how to estimate the matching likelihood
between two attributes A ∈ S1 and B ∈ S2. Let {Tt ↭
Ts} = {(t1 ↭ s1), (t2 ↭ s2), ..., (tn ↭ sn)} denote the
set of linked record-pairs so far, we adopt the same model
to calculate the matching likelihood between two attributes,
where the damping factor is not required since the records
are usually independent with each other. Thus we have:

LSM(A,B) = 1

1 + e−S(Tt↭Ts,A,B) (7)

where S(Tt ↭ Ts,A,B) is the overall contribution of the
set of linked record-pairs Tt ↭ Ts to the matching of the
attribute-pair A and B, which can be computed as:

S(Tt ↭ Ts,A,B) = α⋅ ∑
(t↭s)∈{Tt↭Ts}

ϕ(t, s)⋅ctr(t[A], s[B])

(8)
where α is a parameter to control the contribution score
about the related record-pairs, and ϕ(t, s) = −ln(1 −
LRM(t, s)) is also a logarithmic function to map the value
from [0,1] into [0,+∞).

In the interactive process, our strategy is to keep a
high precision with a strict constraint and improve the
recall step by step. That is, at each RM or SM step, the
LRM or LSM for a number of candidate record-pairs or
attribute-pairs will be calculated, and only those satisfying
predefined threshold will be taken as linked pairs for further
interactions.

Example 2: Let (Product↭ Product) be the
seed attribute-pair to initiate the interaction between
the two tables as depicted in Fig. 1. Assume the
IdC(Product↭ Product) is 0.97, and let 0.7 be the
threshold to the matching likelihood of both SM and RM
for illustration, θ = 0.1 in Equation 6.

At the first RM step, we have (t1 ↭ s1) and (t2 ↭
s2) given that LRM(t1, s1) = 1

1+e−3.5066 = 0.97 > 0.7 and
LRM(t2, s2) = 1

1+e−0.8723 = 0.705 > 0.7.
At the first SM step, we have (Weight ↭ WT ) since

they share the same two values in the two pairs of linked
records such that the matching likelihood can be calculated
as: LSM(Weight,WT) = 1

1+e−[−ln(1−0.97)−ln(1−0.705)] = 0.991.

4 QUALITY CONTROL

Although the interaction scheme introduced above tends to
select more promising matching pairs for iterative interac-
tion to keep a high matching precision, still, the linking
decisions made during the interaction may involve errors,
since: (1) the decisions made at each SM (or RM) step
based on temporary RM (or SM) results should be selected
for filtering out the unreliable ones; and (2) once a mistaken
matching happens at an iteration, more mistaken matchings

might be introduced in later iterations, i.e., the “semantic
drift” problem happens.

In the following, we introduce how to control semantic
drift, and how to iteratively update the linking pairs in the
interaction for higher-quality linking results.

4.1 Semantic Drift Control
We validate the newly-linked records and newly-linked
attributes separately to prevent semantic drift from hap-
pening. After each RM step, we identify “risky” record-
pairs by checking the unbiased variance of the similarity
between their value pairs under various attribute-pairs,
while after each SM step, we identify “outlier” attribute-
pairs by applying cross-validation techniques to validate all
the linked attributes.
1) Unbiased Variance Checking for “Risky” Records.
Intuitively, two records having similar values under more
attribute-pairs tend to have higher matching likelihood.
However, relying on the matching likelihood only can-
not effectively differentiate high-quality record-pairs from
“risky” ones due to the ubiquitously existing errors, various
formats and so on. To identify the risky pairs, we measure
the degree of instability of each record-pair by calculat-
ing the variance of the similarity between their attribute
values under various attribute-pairs. More specifically, for
a record-pair (t ↭ s), we get the degree of instability
under different attribute-pairs by calculating the Unbiased
Variance [33] (short for UV ) of the similarity between their
value pairs under various attribute-pairs as:

UV (t, s) = 1

m − 1

m

∑
i=1

[sim(t[Ai], s[Bi]) − sim(Ai,Bi)]2

(9)
where sim(Ai,Bi) is the average similarity of all the
attribute values under the attribute-pair (Ai,Bi) and m
is the number of linked attribute-pairs. We remove the
record-pairs whose UV values are larger than a user-defined
threshold, which is set as the average UV values of all
the record-pairs to be checked in a data set by default.
Note that sim(A,B) will change after removing some
record-pairs, but we can obtain the final fixed record-pairs
after several iterations. This process is similar to the k-
means clustering [27] whose convergence property has been
proved well. The complexity of the UV-checking method
is O(pq2), where p is the number of linked attribute-pairs
and q is the number of linked record-pairs to be checked.

This UV-checking is crucial to matching quality control,
since it not only guarantees the high-quality record-pairs
for next SM step, but also helps us identify different
presentations of the same entity, for example “in” is an
abbreviation of “inch” in the example in Fig. 1, since every
pair of linked attribute values shares the same distance “ch”.
2) Cross-Validation for Detecting “Outlier” Attributes.
We adopt the cross-validation techniques to validate the
linked attribute-pairs. Intuitively, if a pair of linked at-
tributes does not consist with the other attribute-pairs, it
is very likely a risky “outlier” that should be dropped.

Specifically, we denote the set of all attribute-pairs as
P , and partition P into k disjoint subsets denoted as
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P = {P1, P2,⋯, Pk} and let the number of attribute-pairs
in each subset in P be ∣P ∣

k
(We initialize k as the number

of attribute pairs at one step. If ∣P ∣ is too large, we can
repartition them to reduce the computational cost). And we
denote P −Pi the attribute-pair set which excludes Pi from
P . At each verification, we take P−Pi as a training set and
Pi as a validation set. We exploit P − Pi to infer record-
pairs, and then we compute the matching likelihood of
attribute-pairs in Pi according to the inferred records pairs.
Typically, we let the number of attribute-pairs in Pi be one
(considering not too many attribute-pairs) and denote it as
(A↭ B). We adopt a linear loss function F in regression
F (S, ((A,B), η))) = S(t↭s)∈R(t[A], s[B]) − η, where R
is the record-pairs inferred by P − Pi, S is a similarity
function and η is a qualified threshold. And we define the
error {0,1}-loss in the judgement F (S, ((A,B), η))) = 1,
if S(t↭s)∈R(t[A], s[B]) < η. Then we calculate the errors
(short for Er) of the attribute-pair (A,B) as follows:

Er(A,B) = 1

∣R∣ ∑
(t↭s)∈R

F (S, ((A,B), η)) (10)

We repeat this verification process k times with different
validation sets and then we obtain the Er values of each
attribute-pair. We then drop the attribute-pairs whose Er is
lower than a predefined threshold.

4.2 Iterative Updating and Adjusting

As the interaction proceeds, more and more attribute-
pairs and record-pairs are linked. After each iteration, the
matching likelihood we calculated in previous iterations
need to be updated, according to which we also need to
adjust the attribute and record-pairs that are already linked.

The relationship between the record-pairs and attribute-
pairs is mutually reinforced. We can use a bi-graph to illus-
trate the relationship between the record-pairs and attribute-
pairs, where the weight on an edge means the contribution
score of a record-pair or an attribute-pair. Typically, the
weight on an edge which points to an attribute-pair (A,B)
from a record-pair (t, s) is ϕ(t, s) ⋅ ctr(t[A], s[B]), and
the weight on an edge which points to a record-pair (t, s)
from an attribute-pair (A,B) is φ(A,B) ⋅ ctr(t[A], s[B]).
Then the matching likelihood of a record-pair is to apply
the function f(x) = 1

1+e−λ⋅x to the summation of all the
weights on the edges pointed to the record-pair itself. And
this calculation method can be also adapted to an attribute-
pair. Denote the matching likelihood of record and attribute-
pairs respectively as a vector r⃗ and a⃗. We compute r⃗ and
a⃗ alternatively until they all reach a stable state. We prove
that the vectors r⃗ and a⃗ will converge to a constant vector.
Formally, we have the following conclusion:
T heorem 1: The iterative algorithm is convergent. That

is, the matched record and attribute-pairs will be uniquely
determined finally.

Proof: Please see the appendix.2

2. Due to the limitation of space, we put our
appendix online which can be accessed through
http://ada.suda.edu.cn/Uploads/File/201512/04/1449212591654/proof.pdf

4.3 Algorithm Analysis and Other Issues
One issue of the algorithm is how to set the thresholds for
the matching likelihood of record-pairs and attribute-pairs
respectively. Although we set the thresholds empirically
for different data sets, the experiment results show that
the thresholds can be set to values in a quite large range
where the performance of our algorithm has no significant
variation. The reason is that the initial threshold setting
will not affect the number of matched record or attribute-
pairs at the later steps. Specifically, if the threshold is too
high, we just need more iterations to find more matched
record or attribute-pairs. If the threshold is too low, the
quality control process will gradually amend them as the
interaction algorithm goes. Generally, the thresholds should
be larger than 0.5, which means one record or attribute-pair
is more likely to be a correct one than a wrong one. In our
experiments, we set both of them to 0.6. Also, the threshold
setting for Er is similar to the threshold setting to matching
likelihood.

The time complexity of the algorithm is mainly decided
by both the time complexity of SM steps and that of RM
steps. The cost of SM mainly depends on the comparison
times between two subsets of instances that are used for
schema matching, while the cost of RM mainly depends
on the number of records and the size of schemas in the
two tables. Formally, we analyze the time complexity of
our algorithm as follows:
T heorem 2: Given tables T1 = {t1, t2, ..., tn} under

schema S1 = {A1,A2, ...,Ap}, and T2 = {s1, s2, ..., sm}
under schema S2 = {B1,B2, ...,Bq} for integration. The
upper-bound of the time complexity that an interaction
scheme for IntSRM can reach is: O(min(p, q)mn), where
p and q are the number of records in T1 and T2 respectively,
m and n are the number of attributes in S1 and S2

respectively.
Proof: Please see the appendix.

5 OPTIMIZATIONS ON EFFICIENCY
As can be seen from the proof of Theorem 2, the efficiency
bottleneck of the interaction usually lies on the RM step
since there are usually a lot more records than attributes in
the table. To minimize the number of record-pairs for com-
parison, some state-of-the-art indexing techniques [8] have
been proposed for scalable record linkage and successfully
applied on RM based on the key attribute. In this paper, we
extend the q-gram index [9], [22], [34] to multiple pairs of
attributes scenario, and split potential matched record-pairs
between the two tables into (possibly overlapped) blocks so
that matching-record-pairs are only identified within every
block.

5.1 Indices for SM and RM Interaction
Before introducing how the indices are built on linked
attribute-pairs, some definitions and lemmas are given first:

Definition 1: Given a string s, a set of q-grams (q is a
constant to denote the length of each gram) can be gen-
erated from s as: Gms(s, q) = {gm1, gm2, ..., gm∣s∣−q+1},
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where gmi consists of the characters from i to (i + q − 1)
by their natural order in s. Then an `-length consecutive
q-gram sequence (or (`, q)-seq for short) of s can be
defined as a string that consisted of a sequence of q-grams
consecutively in their natural order in Gms(s, q).
Lemma 1: Let F (s1, s2) = ∣Gms(s1,q)⋂Gms(s2,q)∣

∣Gms(s1,q)⋃Gms(s2,q)∣+ε ,
where ε gets very close to 1. Given a q-gram overlap
threshold ω, if F (s1, s2) ≥ ω, then they should share at least
one (`, q)-seq, where ` ≥ q ⋅ ⌊(max(∣s1∣, ∣s2∣) − q + 1) ⋅ ω⌋.

Proof: Please see the appendix.
1) Index Building on a Single Pair of Attributes:
Based on the definition and the lemma above, the index
building process can be described as follows: Given a pair
of linked attributes, for every distinct attribute value s
under the linked attributes in either table, we generate all
(`, q)-seq from this value, where ` ≥ q ⋅ ⌊(∣s∣ − q + 1) ⋅ ω⌋,
where q is a constant to define the length of grams.
Based on Lemma 1, each (`, q)-seq of an attribute value
s will be taken as a key index value for s, according
to which s will be indexed into a corresponding block.
For instance, assume a product value “huawei”, whose
bi-gram list is [‘hu’, ‘ua’, ‘aw’, ‘we’, ‘ei’]. Let ω = 0.8,
then ` ≥ q ⋅ ⌊(∣s∣ − q + 1) ⋅ ω⌋ = 8, thus we will generate six
(`,2)-seq from “huawei”, i.e., ‘huuaawweei’, ‘uaawweei’,
‘huawweei’, ‘huuaweei’, ‘huuaawei’, ‘huuaawwe’ as the
key index values for “huawei”. As a result, “huawei” will
be put into the six blocks corresponding to the six key
index values.
2) Dynamic Indices Building between the Two tables:
It is a dynamic process to build the index on multiple pairs
of linked attributes in the interaction process. Initially, we
only build the index under the seed attribute-pair (such as
(Product↭ Product)). When more linked attributes are
identified at each SM step, we build an index under each
of these linked attributes, as long as its IdC score is higher
than a predefined threshold. For easier presentation, we
call the index we build on the two databases for integration
as a Qgram-based Multiple-Line Indices for the Interaction
between RM and SM (or MLineIndex for short).

Lemma 2 describes the relationship between the thresh-
old ω we mentioned above and the edit similarity threshold
between two attribute values.
Lemma 2: Let ω denote the threshold that works for

controlling the generation of key value indexes in building
the MLineIndex, if two attribute values s1 and s2 are
assigned into one block, then their edit similarity must be
no less than ⌊(max(∣s1∣,∣s2∣)−q+1)⋅ω⌋+q−1

max(∣s1∣,∣s2∣) , and if s1 and s2 are
not in the same block, their edit similarity must be no larger
than 1 − 2−q+max(∣s1∣,∣s2∣)−⌊(max(∣s1∣,∣s2∣)−q+1)⋅ω⌋

q⋅max(∣s1∣,∣s2∣) .
Proof: Please see the appendix.

5.2 Greedy RM based on MLineIndex

We now describe a greedy RM algorithm with the MLineIn-
dex at a particular RM step. Assume we already have
a set of linked attributes, and every potential matched
record-pairs w.r.t. a linked attribute-pair is put into a block
and indexed under this linked attribute-pair. For the sake
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Fig. 4. The MLineIndex built on the Two Example
Tables in Figure 1

of processing the interaction between SM and RM with
the minimum RM comparison times, each RM step only
greedily selects one particular block of records for RM
comparison from all the blocks indexed by the MLineIndex,
which should satisfy the following two conditions: (1)
it requires the least RM comparison times; (2) it has a
high probability to generate matching record-pairs. More
specifically, given a block Block = ({LR},{RR}), where
LR is the set of records from one table, and RR is the set
of records from the other table, we estimate the priority of
doing RM to this block as:

priority(Block) = IdC(AttrPairBlock)
Max(∣LR∣, ∣RR∣) (11)

where AttrPairBlock is the attribute-pair under which the
block is indexed, and Max(∣LR∣, ∣RR∣) = ∣LR∣×∣RR∣

Min(∣LR∣,∣RR∣)
denotes the average comparison times needed for gener-
ating a matching record-pair from Block, since the block
contains at most Min(∣LR∣, ∣RR∣) record-pairs. When a
block Block = ({LR},{RR}) is selected for RM compar-
ison, for every pair of records between LR and RR, we
calculate the similarity between their attribute values under
each linked attribute-pairs respectively, and then get their
RM matching likelihood according to Eq. (3). We set a
maximum number of record-pairs to be used for SM (1000
in our experiments), such that the time consumption of SM
steps will not be deferred too much by RM steps.

We observe that the block with higher priority often pro-
duces correct record-pairs based on MLineIndex, although
we have not considered the similarity of attribute values in
Eq. (11). The reason is that the high priority of a block
often means there are less records in the block, but they
often have quite a lot same q-grams i.e. their similarities
are often very large.

Another advantage of this strategy is that we can rapidly
identify the matched record-pairs, since many attribute-
pairs have been identified. Such that, for the rest records,
they can reduce many unnecessary comparisons due to the
less and less number of records.
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How to set the threshold ωi for each attribute-pair
Ai is the key problem for the indices-based greedy RM
algorithm. An optimal setting is demanded to make a
trade-off between the precision of matching results and
the efficiency. In the following, we discuss the setting of
ωi for maximizing the precision of matching results while
reducing the time complexity as much as possible.

5.2.1 Setting the Parameter ωi
Computing time cost is mainly affected by the number of
blocks and the number of record-pairs in blocks. Generally,
to reduce the number of blocks and the record-pairs in
blocks, it is preferred to have a relatively high threshold
ω to those attribute-pairs with a relatively low IdC. As
the number of q-grams generated from an attribute values
grows exponentially as the threshold ω decreases [8], we
employ a convex decreasing function to set the threshold for
an attribute-pair A↭ B according to its IdC. In particular,
let {A1 ↭ B1,A2 ↭ B2, ...,Am ↭ Bm} denote the set of
matched attribute-pairs sorted in a non-decreasing order of
their IdC scores, and let ωi (1 ≤ i ≤ m) denote the q-
gram overlap threshold for the attribute-pair Ai ↭ Bi, we
choose ω1 as a base value (it will be set automatically in
later discussions), and then obtain ωi with the following
equation:

ωi = e
IdC(Ai↭Bi)⋅lnω1
IdC(A1↭B1) (12)

and we will show how to set ω1 below.
According to Lemma 2, if two records t and s are not in a

same block pair under the index of Ai ↭ Bi, the similarity
between their attribute values under Ai ↭ Bi has a upper
bound denoted by simu

i . Thus we can rewrite simu
i as the

following equation combining with Eq. (12):

simu
i = 1 − 2 − q +Mi − ⌊(Mi − q + 1) ⋅ ω

IdC(Ai↭Bi)

IdC(A1↭B1)

1 ⌋
q ⋅Mi

(13)
where Mi is the maximal length of values under Ai ↭ Bi.
Thus if one record-pair (t, s) is not in any block pair of
all the indices, we can obtain its upper bound of matching
likelihood as follows:

LURM(t, s) = 1

1 + e−λ⋅∑mi=1 −ln(1−IdC(Ai↭Bi))⋅ctr(t[Ai],s[Bi])
(14)

Recall Eq. (6), since sim(t[Ai], s[Bi]) is larger than θ,
ctr(t[Ai], s[Bi]) here can be substituted with simui −θ

1−θ .
Given a quality threshold τRp to matched record-pairs, and
let LURM(t, s) = τRp , we can derive the value of ω1 by
replacing simu

i with Eq. (12), and ω1 will satisfy the
following equation.

1

1 + e−γ⋅∑mi=1 −ln(1−IdC(Ai↭Bi))⋅(simui −θ)/(1−θ)
= τRp (15)

Eq. (15) is an equation with only one unknown parameter
ω1. Therefore, ω1 can be derived by analysing Eq. (15).
And all the other thresholds about ωi can be derived
according to Eq. (12).
T heorem 3: By setting w1 which satisfies Eq. (15) and

wi (1 ≤ i ≤m) according to Eq. (12), all possible matched

pairs (whose matching likelihood is larger than τRp ) can be
covered by the minimum number of blocks under linked
attribute-pairs.

Proof: Please see the appendix.

5.2.2 Bounding for RM Step
Although setting thresholds can prune a large percent of
unmatched record-pairs for comparison, there are still many
unmatched record-pairs waiting to be filtered in the blocks.
Here we employ a bounding-based strategy to further
identify unmatched record-pairs from matched ones.

For a record-pair (t, s) in a block under a set of
attribute-pairs {Ai ↭ Bi}, where 1 ≤ i ≤ m, it satisfies
⌊(max(∣s1∣,∣s2∣)−q+1)⋅ω⌋+q−1

max(∣s1∣,∣s2∣) ≤ sim(t[Ai], s[Bi]) ≤ 1 accord-
ing to Lemma 2. Then the lower bound of the matching
likelihood LLRM(t, s) between t and s can be calculated
with the lower bound of sim(t[Ai], s[Bi]), while the upper
bound of the matching likelihood between t and s is:

LURM(t, s) = 1

1 + e−λ⋅∑mi=1 −ln(1−IdC(Ai↭Bi))
(16)

If LLRM(t, s) > τRp , then (t, s) will be a candidate record-
pair, and if LURM(t, s) < τRp , then (t, s) will be pruned
directly. In order to tighten the bounds as early as possible,
we compute the similarity of the attribute values under
the attribute-pair with higher IdC in priority, and then
the upper-bound and lower-bound of the likelihood can be
updated correspondingly.

After all, we will analyze the time complexity of this
greedy and bounded interaction algorithm based on the
MLineIndex in the appendix.

6 EXPERIMENTS

6.1 Data Sets and Metrics

We conduct experiments on 2 real and 1 synthetic data sets:
● Mobile: We collect cellphones on sale from Tmall3 and

PConline4 respectively. The Tmall table contains 40k
tuples under 53 attributes, while the PConline table
contains 56k tuples under 46 attributes. The two tables
share 3.8k records and 38 common attributes including
Release Date, Operation System, RAM, Screen Size,
Type etc.

● Camera: We collect digital cameras on sale from
Yesky5 and PConline respectively. The Yesky table
contains 25k tuples under 50 attributes, while the
PConline table contains 34k tuples under 44 attributes.
The two tables share 25k records and 31 common
attributes including Type, Pixels, Panel, Wifi, Manu-
facturer etc.

● Synthetic: We also generate two synthetic tables shar-
ing 100k tuples and 60 common attributes and use
certain rules to let the distribution of data close to
real data sets. For instance, the similarities between

3. https://www.tmall.com
4. http://www.pconline.com.cn
5. http://www.yesky.com
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attribute values in linked record-pairs are uniformly
distributed between 0 and 1. Note that since there are
some missing attribute values in the two real data sets,
we also generate a random number of missing values
under each non-key attribute for the synthetic data set.

Metrics: We evaluate the effectiveness of the integration
methods in four dimensions, i.e., Precision of SM, Recall
of SM, Precision of RM, and Recall of RM. Also, the
F1-score of SM and RM are also concerned. We use Time
Cost to evaluate the efficiency of a method.

6.2 Integration Quality Comparison

We compare the integration quality of our method (short for
IntSRM) with several state-of-the-art methods on the three
data sets. For a fair comparison, for each method testing
on every dataset, we tuned its setting to make the method
reach the best performance on that specific dataset.
a) Name-based SM (NBSM): This SM method uses the

edit similarity between the attribute names [20] for SM.
b) Value-based SM (VBSM): This SM method uses the

overlap between the selected subset of attribute val-
ues under the two attributes [19] for SM, where each
selected subset contains the top-k highest frequency
attribute values under the attribute.

c) Linkage-Points-based SM (LPSM): This is a state-of-
the-art instance-based SM method proposed in [23],
which treats the matching function as a black-box and
uses specific measures to have reliable SM results from
the overlapping instances.

d) Key-based RM (Key): This RM method inspects the
string similarities between key attribute values [4] only
for RM, which also uses q-gram together with inverted
index [31], as well as prefix-based pruning [32] and
batch-based matching [7], for improving efficiency.

e) Key+Non-key RM (NokeaRM): This is a state-of-the-
art RM methods using both key and non-key attributes
for RM [35], [11]. Briefly, it builds a probabilistic rule-
based decision tree based on all attributes according
to the ability of each attribute in identifying match-
ing records and the ability in identifying un-matching
records, and then relys on this decision tree to make
RM decisions. To further improve its efficiency, q-gram-
based blocking techniques are used: we generate q-
grams for each value, and only those satisfying the
minimum q-gram overlap will be compared.

In the following, we first compare the integration quality
of RM with previous methods, and then that of SM with
previous methods. Since the overlap ratio of the records
between two tables has a great influence on the integration
quality, we conduct our comparison experiments at various
overlap ratios (from 10% to 90%) on the three data sets.
(1) F1 Comparison for RM: As demonstrated in
Fig. 5(a)(b)(c), pervious RM methods work poorly (with
F1-score around 0.5-0.6 for NokeaRM and F1 around 0.2-
0.4 for Key) when the overlap ratio is low (such as 10%,
30%), while IntSRM can reach F1-score as high as 0.6-
0.8 on all the three data collections. As the overlap ratio

increases, the integration quality of all methods increases
gradually. But always, our method IntSRM reaches 20%
higher F1 than the other methods.
(2) F1 Comparison for SM: Similar comparison results
can be observed for SM. As demonstrated in Fig. 5(d)(e)(f),
pervious SM methods work poorly (with F1-score less
than 0.6) when the overlap ratio is low (such as 10%,
30%), while IntSRM can reach 0.7-0.8 on all the three data
collections. As the overlap ratio increases, the integration
quality of all methods increases gradually. But always, our
method IntSRM reaches about 15% higher F1-score than
the other methods.
(3) PR (Precision & Recall) Comparison for SM and
RM Respectively: For more comprehensive comparison,
we also draw the Precision-recall graphs for RM and SM
comparison by setting the overlap ratio 70% on all the three
data collections. As shown in Fig. 6, basically, our method
IntSRM can always reach the best performance on either
precision or recall over the three data collections.

6.3 Efficiency Comparison
We compare the efficiency of our method with previous
methods at the setting of the overlap ratio 70%. For fair
comparison, we also compare the time cost of SM or RM
with previous SM or RM methods separately. For IntSRM,
the time cost of SM includes not only the time cost of all
SM steps, but also the time cost of all the RM steps that
processed before the last SM step. The time cost of RM for
IntSRM includes the time cost of all SM and RM steps.
(1) Time Cost for RM: As described in Fig. 7(a)(b)(c),
the Key method uses much less time than NokeaRM and
IntSRM since the Key method uses the key attribute only
for RM. Compared with NokeaRM, IntSRM uses a bit more
time since NokeaRM employs a special decision tree to help
prune a large percentage of record-pairs for comparison,
which on the one hand, greatly improves the efficiency, but
on the other hand, hurts the precision and recall as reported
in the experiments in the last subsection. Overall, the time
cost spend in RM by IntSRM is acceptable as we greatly
improve the precision and recall of the integration.
(2) Time Cost for SM: As described in Fig. 7(e)(f)(g),
VBSM uses the least time than both LPSM and IntSRM.
The time cost of IntSRM is more than LPSM since the
IntSRM spends more time on finding record-pairs under
more attribute-pairs than LPSM. But the time cost of
IntSRM is acceptable in practice since we can greatly
improve the precision and recall.

6.4 Quality Improvement Evaluation
We now evaluate the effectiveness of our proposed tech-
niques for improving the quality of the integration results
on the two real data sets. For differentiation, we call the
interaction without any quality control techniques as the
Baseline, the one with validating new-linked records as
UV-Check, the one with validating new-linked attributes as
Cross-Validate, and the one with both the two techniques
as UV+Cross.
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Fig. 5. Comparing the F1-score of RM and SM Methods respectively on the Three Data Sets
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Fig. 6. Comparing the Precision and Recall on Three Data Sets
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Fig. 7. Comparing the Time Cost with Other Methods on Three Data Sets

(1) Semantic Drift Control: As demonstrated in
Fig. 8(a)(b)(c)(d), the two techniques have different per-
formance on the two data collections, but the combination
of them apparently improves the integration quality of both
SM and RM. Specifically, UV-Check tends to improve the
precision of the Baseline by around 10% for SM without
hurting the recall, while Cross-Validate tends to improve
the precision of the Baseline by around 10-15% but may
hurt the recall of SM. This is because Cross-Validate uses
a strict rule in deciding unqualified matching pairs. We
set the threshold of Er value as 80% here. Overall, the
combination of the two always improves the precision and
recall of both SM and RM.

(2) Iterative Updating: As demonstrated in Fig. 9(a)(b),
the quality of RM and SM can also make a further
improvement and they can hold steady with a satisfied result
as the iteration goes.

6.5 Efficiency Improvement Evaluation
We evaluate the effectiveness of our proposed techniques on
improving the efficiency of our interaction algorithm. We
use Baseline to denote the algorithm without any optimiza-
tion on efficiency, and Greedy to denote our interaction
algorithm based on the MLineIndex we build.
(1) Efficiency Improvement: As shown in Fig. 7(d),
we can find that our Greedy method actually can save
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Fig. 8. Quality Improvement on ”Mobile” and ”Camera” Data Sets and Loss of Quality on “Mobile” Data Set
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Fig. 10. Effect of Missing Values to Integration Quality

almost 90% time cost of the baseline which proves the
effectiveness of the proposed techniques.
(2) Side-effect: Loss in Quality: As a side-effect of the
efficiency improvement, there is a little decrease on both
precision and recall. As shown in Fig. 8(e)(f), there is less
than 5% decrease on precision and 2%-5% decrease on
recall, which is an acceptable price to pay for the reduction
of 90% of the time cost.

6.6 Effect of Missing Values

We also conduct experiments on evaluating the effect of
missing values to the performance of the proposed ap-
proaches and the other methods by randomly removing
some non-key values from the table. As can be observed
in Fig. 10(a)(b), as the missing ratio increases from 0%
to 60%, the integration quality (including the F1-score of
SM and RM) of all approaches using non-key attribute
values decreases. For SM, LPSM decreases the most from
more than 0.80 to about 0.57, while our approach IntSRM
can still reach about 0.88 when the missing ratio becomes
60%. For RM, NokeaRM is also robust and only decreases
from about 0.7 to about 0.63, while our approach IntSRM
decreases from 0.89 to about 0.75. Generally, our method
always reaches nearly 10% higher F1-score than the other
methods.

6.7 Parameter Setting

We evaluate the effect of the three key parameters in our al-
gorithm to the quality of data integration, which are: (1) the
threshold to the SM matching likelihood; (2) the threshold
to the RM matching likelihood; and (3) the threshold of Er
value of Cross-Validate. To avoid potential biases, we fix
the other two when we evaluate one of the three parameters.
As can be seen from Fig. 9(c)(d), the F1-score of SM or RM
has no significant variation to different parameter settings.
This coincides with the discussion in Sec. 4.3: different
parameter settings of IntSRM will generate almost the same
quality after different numbers of interactive steps. We also
find that the time cost of them has no much difference.

7 RELATED WORK

A host of works have been done on Schema Matching [28]
and Record Matching [14]. While typical SM approaches
are based on the similarity (or semantic correlation) be-
tween Attribute Names [15], [10], or Attribute Value Sets
(i.e., instance-based SM) [2], [24] or combination of the
two [12], typical RM methods measure the similarities
between either key attribute values [4] or non-key attribute
values [35]. Excellent surveys to the two problems can be
found in [28] and [14], respectively.

For SM, our work is closely related to instance-based
SM method, which has been recognized as an effective
approach due to its robustness for matching heterogenous
schemas. Generally, the instance-based SM method lever-
ages the classified instance data to process SM by measur-
ing the similarity between sets of annotated instances (e.g.,
the construction of links between attributes based on the co-
occurrence of instances). The basic idea of instance-based
SM method is that the more significant overlap among
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common instances, the more relevant the two attributes are.
The challenge here lies on how to define the significance for
the overlap. [16] determines the similarity of two attributes
by executing a pair-wise comparison of instance values
using a similarity function, while [18] defines the similarity
of two attributes by considering both the specificity and
generalization of instances when two attributes are linked.
In this paper, we propose a new SM rule by measuring
the similarity of two attributes between the sets of linked
record-pairs. More advanced, our method tends to link
attributes with more explicit evidence (i.e. linked record-
pair should have similar values under the same attribute),
even there are just a few overlapped instances.

In addition, instance-based SM methods [18], [23] spend
much time on comparing two set of attribute values. To
save the time cost, some methods calculate the similarity
between two attributes based on selected small subsets of
attribute values that are generated from the two large orig-
inal attribute value sets respectively. In [13], [23], hashing
method and filtering strategies were proposed to improve
the scalability of the instance-based schema matching. In
this paper, we extend the q-gram index [9], [22], [34]
to multiple pairs of attributes scenario, and split potential
matched record-pairs between the two tables into (possibly
overlapped) blocks such that matching-record-pairs are only
identified within every block. At each SM and RM step,
we only process those blocks that will bring the maximum
benefits to the future interaction with the minimum cost.

Efficiency is a more serious problem for RM since there
are usually many more records than attributes in databases.
So far, various techniques have been proposed to reduce the
overhead of RM, including Q-Grams together with inverted
indices [31], prefix-based pruning techniques [32], batch-
based matching techniques [7]. However, these techniques
are only applied on the key attributes. A recent work [35]
uses both key and non-key attributes for RM and relies
on a special decision-tree to improve the efficiency of
RM. In this paper, we do RM based on both key and
non-key attribute values under the linked attributes, which
outperforms previous methods on accuracy. Meanwhile,
inspired by the previous methods, we extend the indices
over all attributes to improve the efficiency of RM and
the interaction process, which has been demonstrated to
significantly reduce time cost in our experimental results.

There are also works on using structural/relational simi-
larity of records for SM or RM. [3] and [30] resolve related
entities collectively and combine attribute similarity with
relational evidence to improve the quality of RM results.
In [26], a graph based on attributes, attribute types and their
relations is built to capture inherent structural information
of the table, which can be utilized in SM. These approaches
can improve the integration quality on data sets that have
strong structural/relational information to utilize. However,
the improvement of integration quality will be limited when
data sets have weak structural information.

Recently, external domain knowledge and human in-
terventions are also employed to improve the quality of
SM [12] or RM [21]. These methods get external knowl-

edge from either external knowledge base like wikipedia,
or crowd workers, and use these external knowledge to
label some attributes or instances and then extract effective
features for better SM or RM.

So far, all existing efforts take SM and RM as inde-
pendent steps in data integration. There has been little
discussion about the interaction between them. A similar
interesting study has been conducted on the interaction
problem between RM and Data Cleaning [17], but the
problem setting and the key challenges in that work are
different from ours in various aspects.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we study the interaction between SM and
RM by performing them alternately in data integration.
Extensive experiments on three data collections show that
the combination and interaction between SM and RM
significantly outperforms previous works that conduct SM
and RM separately. Based on special-designed indices, we
reduce around 90% overhead of the interaction algorithm.

Nonetheless, our approach has its own limitations: it can
only work well with the case that one attribute (record) in
a table matches with no more than one attribute (record)
in the other table. As a future work, we will consider to
extend our approach to deal with multiple matches. Our
future work also includes addressing the problem when data
is too large to be loaded into memory at a time.
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