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Abstract—Blockchain has recently amassed a lot of interest
from researchers and practitioners. This is due to its ability
to manage data in a decentralized, transparent and account-
able manner. However, blockchain applications are limited in
terms of compute and cost effectiveness. These limits led to
smart contracts—programs that are processed by the blockchain
network—being relatively simple, not taking advantage of com-
plex computation methods.

In this paper, we shed light on the design space of using
machine learning in blockchain applications (we call this ML
on Chain for short). Although a lot of work discusses the
intersection of blockchain and ML, there is little clarity in
mapping, understanding, and evaluating the various approaches
in this space. This paper contributes to this new area by the
following: (1) we introduce a taxonomy of ML on Chain. This
taxonomy considers existing and future potential methods in this
area and groups them based on their design characteristics. We
consider in the taxonomy five off-chain approaches and a baseline
on-chain approach. (2) we perform an extensive experimental
evaluation of ML on Chain methods. We compare the different
5 groups of solutions across different settings and three ML
model types: logistic regression, k-nearest neighbors and neural
networks. (3) Using the taxonomy and experimental study, we
provide insights about the current state and challenges of the
ML on Chain space; we use this newfound understanding to
discuss potential future approaches and provide suggestions to
address ML on Chain challenges.

I. INTRODUCTION

There has been a growing interest in blockchain in the last
few years. It has the ability to manage data in a decentralized,
secure, transparent and accountable manner. With the support
of smart contracts (i.e., programs running on blockchain),
DApps (Decentralized Applications) and DAOs (Decentralized
Autonomous Organizations) are developed to present new
solutions for Internet applications. This has been explored in
many areas such as decentralized finance (DeFi) [1], gaming
and metaverses [2], [3], and supply-chain [4], where hundreds
of thousands of users and hundreds of millions of dollars were
amassed for these applications [5]. For example, BitDAO [6]
manages more than 2.5 billion dollars for economic alignment,
governance, treasury management, and organization.

Machine learning on blockchain (ML on Chain) has im-
mense benefits such as immutability, accountability and trans-
parency of the ML models [7], [8]. In terms of training, ML on
Chain ensures that the training process was not tampered with.

In terms of prediction (also called inference), ML on Chain
ensures that the prediction was on the intended model without
malicious interference. However, smart contracts are limited.
Training ML models in smart contracts requires paying high
monetary fees (e.g., gas on Ethereum). These fees are higher
for more complex computations. For instance, doing a scalar
product over two 1000-dimension vectors could cost more than
$10 on Ethereum. This leads to disregarding a lot of computing
technologies that require intensive computation, such as ML
on Chain.

Recent advances in blockchain have led to ML on
Chain becoming more feasible due to emerging off-chain
technologies—i.e., technologies that utilize nodes outside of
the blockchain network to perform computation and storage
on behalf of smart contracts. This motivates us to rethink the
feasibility of ML on Chain. The key challenge in utilizing off-
chain nodes is that these nodes can be malicious. Solutions
to ensure that off-chain processing is performed correctly
include the use of authenticated data structures [9], [10], [11],
verifiable computing [12], [13], [14], trusted hardware [15],
[16], [17], and distributed byzantine agreement [18], [19].
Although these approaches were explored for various use
cases [20], [21], [22], there is little work on showing how
to utilize them for ML on Chain as well as little work on
understanding their properties and how they compare with
each other when used for ML on Chain. We aim to fill this
gap in this paper.

In this paper, we provide an analysis and experimental study
of the ML on Chain space. In terms of analysis, we propose
a taxonomy of ML on Chain that groups solutions into a
baseline on-chain approach and five off-chain approaches (i.e.,
enclave-based, verifiable computing, incentive-based, voting-
based, and distributed byzantine ML). In the analysis, we
discuss the design implications of each approach on factors
such as ML model performance, trustworthiness of training
and predictions, and data privacy. Then, we utilize this taxon-
omy to guide our experimental study where we evaluate and
compare the five off-chain and baseline on-chain approaches.
In the evaluations, we focus on the practical implications of
ML on Chain solutions such as their throughput, latency, and
monetary cost. To cover a wide-range of ML approaches,
we perform our experiments with three ML models that
have different characteristics: logistic regression, k-nearest978-8-3503-1019-1/23/$31.00 ©2023 IEEE



neighbors and neural networks.
To the best of our knowledge, this is the first work to

conduct both a design and quantitative analysis of ML on
Chain.The contributions of this paper are:

• We propose a taxonomy of ML on Chain approaches.
We use this taxonomy to drill down in each category
and analyze various ML on Chain solutions and their
design trade-offs. This includes analyzing design and
performance characteristics, trust assumptions, privacy
and security, monetary cost, and limitations.

• We conduct an experimental evaluation to study and com-
pare ML on Chain solutions. The evaluation is performed
on Ethereum with three popular ML models.

• In addition to providing a taxonomy of prior work re-
lated to ML on Chain, we foresee new ML on Chain
approaches that have not been explored in prior literature
or industry systems and include them in the taxonomy
and evaluation.

The rest of the paper is organized as follows: We first
present background information in Section 2. Then, we pro-
pose the taxonomy in Section 3 followed by a more detailed
analysis of off-chain methods in Section 4. In Section 5, we
show our experiments. In Section 6, we describe the related
work and conclude with a discussion of future directions and
challenges in Section 7.

II. BACKGROUND

In this section, we introduce preliminary and background
information about ML, blockchain and the integration of ML
and blockchain.

Machine learning. In the last decade, there was a lot of
interest in applying ML to problems in various domains [23],
[24]. This is because of the powerful nature of ML in learning
insights from data and applying these insights for future tasks.
A ML workflow, as shown in Figure 1, can be divided into
two parts: model generation and model use. Model gener-
ation mainly contains two components: data preprocessing
and model training. Data preprocessing transforms raw data
into ML-compatible representations which may include feature
selection, data regularization, and normalization. The model
training refers to the process of generating a ML model from
an input dataset. Model use is often called inference which
refers to the process of using the ML model for tasks such
as prediction and classification. An epoch of training is when
all the training data is used at once and is defined as the
total number of iterations of all the training data in one cycle
for training the ML model. There are different types of ML
models such as neural networks [25], decision trees [26], naive
Bayesian [27] and k-NN [28]. Each model type offers different
characteristics in terms of complexity, performance efficiency,
and accuracy.

Blockchain and smart contracts. Blockchain is an im-
mutable sequence of data records that are cryptographically
linked together and maintained by a decentralized network
of nodes, called blockchain nodes [29]. Blockchain nodes
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Fig. 1: A simple ML workflow.

use a consensus algorithm to agree on the order and con-
tent of the data records in blockchain. Consensus protocols
can be permissionless, where nodes can join and leave the
blockchain network arbitrarily (open membership) [30]. Ex-
amples of permissionless consensus protocols are Proof-of-
Work (PoW) [31] and Proof-of-Stake (PoS) [32] used by
blockchains such as bitcoin and Ethereum. On the other hand,
closed-membership blockchains such as multi-organization
blockchain consortiums [33] can utilize permissioned consen-
sus protocols such as byzantine agreement protocols [34].

A smart contract is a program (i.e., set of functions and
state such as memory and variables) that is maintained on
blockchain. Smart contracts are stored in the blockchain, and
are automatically processed when a transaction invokes a smart
contract procedure. After each execution of the smart contract,
its state can be updated on the blockchain for checking. Due
to their safety, security and trustworthiness, smart contracts
are the key components in implementing DApps and DAOs.
Deploying and running a smart contract on blockchain often
require paying fees (e.g. users need to pay gas fees for
deploying and running smart contracts on Ethereum). These
fees are high when complex computation is performed or a
large amount of data is utilized.

Integration of ML and blockchain. The integration of ML
and blockchain has been explored in various contexts. This
includes optimizing DApp operation and functionality [35],
[36] and utilizing models to gain insights from collected
data [37], [7]. For example, machine learning algorithms can
be used to identify fraudulent transactions on a blockchain and
prevent them from being processed. Involving blockchain in
the process of training and prediction enables DApps to utilize
ML models without threatening their integrity as trusted,
decentralized applications. In addition to DApps, ML use
cases that benefit from performing ML on Chain are ones that
require features such as transparency, decentralization, privacy,
and accountability. For example, federated learning use cases
require many of these features.

Off-chain scaling. One of the scaling solutions of
blockchain smart contracts is the utilization of off-chain com-
putation and storage. Utilizing off-chain nodes for computation
and storage reduces the monetary and performance overhead
of performing actions on-chain [38], [39], [40]. The main
challenge of off-chain approaches is the security risks of
utilizing nodes that are outside of the blockchain network and
are thus not governed by the same security guarantees. For
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Fig. 2: Taxonomy for ML on Chain.

this reason, many techniques were proposed to ensure that off-
chain nodes will not act maliciously. We present and utilize
some of these techniques when we review off-chain methods
for ML on Chain.

III. TAXONOMY

A. Overview

ML models can be trained and utilized to do inference on-
chain (as part of the smart contract logic) [41] or off-chain
(using nodes outside of the blockchain network) [22], [13],
[39]. In off-chain training and inference, the on-chain smart
contract plays the role of a trusted party that validates and
maintains information about the off-chain node(s). This can
take many forms that we discuss throughout the paper. As
an example, one type of off-chain solutions performs model
training off-chain and then submits the model and a zero-
knowledge proof of the model’s computation to the smart
contract to verify.

We propose a taxonomy of ML on Chain that groups
solutions based on the following: (1) is the task performed
on-chain or off-chain, and (2) is it a model training task or
an inference task. In the rest of this section, we discuss the
taxonomy groups in more details, and in the following section
we provide an analysis of the properties of off-chain methods
(Section IV).

B. On-chain ML Training and Inference

In this section, we discuss on-chain training followed by
on-chain inference.

On-chain training. The main benefit of on-chain training
is the transparency of the training process. We can make sure
that the training process was not tampered with and each user
on blockchain can verify whether a ML model is generated
according to the algorithm in the smart contract. There are
several challenges that are associated with running ML model
on-chain. This includes the high fees involved in processing
and storing the model as well as the latency overhead of
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Fig. 3: Incremental training illustration.

writing to blockchain. We study the cost of training different
ML models on-chain in the evaluation section (Section V).

In addition, there is a fundamental challenge that faces on-
chain ML solutions that is due to the bound on how much
computation and data can be processed on-chain within one
block. To overcome this challenge, models can be trained
incrementally. Specifically, the dataset is split into smaller
datasets so that each part can be performed in a separate block.
After all the parts are processed, the process terminates.

Figure 3 illustrates how incremental training works with
multiple blocks on blockchain. Each block updates the ML
model based on a subset (shard) of the whole dataset. Once the
model is updated based on the current shard, it will be passed
to the next block to continue training. An epoch of the training
process is complete when all the shards are processed once.
Once an epoch of training is performed, the process repeats for
the next training epoch.This training process terminates after
a specified number of epochs are performed. One limitation
of this incremental learning approach is that the shard size
cannot exceed the size limit of each blockchain block. The
maximum size of a block, or the block gas limit, is 30 million
gas for Ethereum. While the model complexity increases, the
number of data samples allowed in each block will decrease.

Most ML algorithms are naturally incremental. That is,
the data samples can be fed into the model in batches for



training. Therefore, such incremental training will not impact
the accuracy of the generated model. However, there are
ML algorithms that cannot be trained incrementally without
additional overhead or complexity. Examples of such models
are k-NN and decision trees. These ML models often require to
scan the whole dataset for each round that updates the model.

On-chain inference. On-chain inference has the advantage
of ensuring that an inference operation is performed on the
desired ML model that is maintained on-chain. The model
that is maintained on-chain could be one that was trained on-
chain (as discussed above) or off-chain (as we discuss in the
next section).

On-chain prediction is straightforward as it entails process-
ing an input sample using the trained model on-chain. This
can be done by making a call to a function on-chain that
implements the inference logic. This would lead to monetary
fees that are proportional to the complexity of the inference
process and the size of the data sample used as input. Also,
this leads to overhead in terms of latency to wait for the smart
contract call to be committed in a block.

Alternatively, a client can utilize a model that is maintained
on-chain without the corresponding cost and latency overhead.
This is because the inference process does not lead to changing
the state of the smart contract. Therefore, the client can
read the model information from blockchain and process the
inference locally. The client, however, must ensure that the
read model is the correct one by running as a blockchain client
and observing the state of the smart contract directly. Running
a full blockchain client can incur high overhead—due to
needing to download the whole chain—which would prevent
this approach. An alternative is to run a light blockchain client
that reads from a full client.

C. Off-chain ML Training and Inference

Off-chain training and inference can significantly reduce
the monetary fees and latency overhead of on-chain training
and inference. Off-chain nodes are more powerful with strong
computation capacity compared to smart contracts that are
limited in size and compute capacity. However, off-chain nodes
are not trusted, which undermines the original intention of
using blockchain. Therefore, the main challenge in building
off-chain training and inference solutions is to guarantee the
integrity of ML models and predictions made by off-chain
resources.

While off-chain nodes may take the responsibility of train-
ing and inference, the on-chain smart contract is still involved
in various ways depending on the off-chain solution. Gen-
erally, the on-chain node’s role in off-chain solutions is one
or more of the following: (1) coordinate between off-chain
nodes that are working collaboratively, (2) verify off-chain
computation outcomes, (3) manage incentives and penalties
of off-chain nodes, (4) maintain meta-information about the
ML model and corresponding digests to prove their integrity.
In the rest of this section, we provide details about these roles
and how they correspond to off-chain solutions.
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Fig. 4: Enclave-based method illustration.

The right part of Figure 2 shows the taxonomy of off-
chain approaches for ML training and inference. Off-chain
ML training and inference can be categorized into single party-
based and multiple party-based approaches. Single party-based
solutions are ones that can generate a proof of the integrity
of the outcome. This can be based on trusted hardware or
software-level verification techniques. Multiple party-based
solutions are ones that rely on performing the computation
on a number of nodes to ensure that a malicious subset does
not threaten the integrity of the computation.

In the rest of this section, we describe and discuss the
advantages and limitations of single party and multi party
approaches.

1) Single party-based methods: Single party approaches are
ones that can rely on a single off-chain node to perform the
computation (training and/or inference.)1 The main challenge
solved by these approaches is the ability to provide a proof
of the outcome of the computation that is performed by the
off-chain node. There are mainly two kinds of single party-
based approaches: enclave-based and verifiable computation-
based methods. While enclave-based methods leverage trusted
hardware technology, verifiable computation-based methods
concentrate on software-level verification.

Enclave-based method [42]. Enclave-based computation re-
lies on Trusted Execution Enviroments (TEEs) to run programs
while preserving the integrity of the computation. This is done
using hardware-level isolation and memory encryption. Well-
known secure enclaves include Intel’s Software Guard Exten-
sions (SGX) and AMD’s SEV technology. Secure enclaves are
also available on a number of cloud computing platforms such
as Amazon AWS (AWS Nitro Enclaves) and Microsoft Azure.

Figure 4 shows the basic framework of the enclave-based
method. Enclave-based methods follow a three-step approach.
First, the off-chain node initializes a secure enclave. Second,
the program to be processed in the secure enclave is loaded.
Third, the off-chain node can start processing requests using
the program in the secure enclave. The outcome of each
computation running on the enclave has a proof (attestation)
of correctness. This attestation can be used to ensure that the
computation was performed correctly using a given program
and input. Attestations can then be sent to the on-chain smart

1Here, we refer to being able to rely on a single off-chain for safety and
correctness of operations. For liveness, these methods can be augmented with
replication solutions.
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contract that maintains the meta-information and proofs for
future clients.

Verifiable computation-based method (VC-based for
short). The core idea of the VC-based method is to enable a
client to verify that an untrusted off-chain node has performed
computations correctly. The VC-based method involves using
cryptographic techniques to enable the verifier, who may not
have access to the data or the computation itself, to verify the
correctness of the computation without actually performing
the computation. Specifically, the off-chain node generates a
proof that can be used to verify or attest the correctness of
that computation (Figure 5).

There are several approaches to verifiable computing, in-
cluding interactive proof systems, probabilistic proof systems,
and fully homomorphic encryption [43]. These approaches
use different methods to enable the verifier to check the
computation, such as by allowing the verifier to ask questions
about the computation or by encrypting the computation in
a way that allows it to be evaluated without revealing the
underlying data.

A popular VC-based method is based on Zero Knowledge
Proofs (ZKP). ZKP allows a prover to produce a proof π
that proves to a verifier that the result of a public function
f on a public input x and secret input w of the prover is
y = f(x,w). ZKP guarantees that the verifier rejects incorrect
proofs with overwhelming probability. An interesting feature
of ZK proofs is that they reveal no extra information about
the secret w beyond the result. ZKPs can be realized in the
form of Zero-Knowledge Succinct Non-Interactive Arguments
of Knowledge (zk-SNARKs) [44], Zero-Knowledge Scalable
Transparent Arguments of Knowledge (zk-STARKs) [45], and
Bulletproofs [46]. The generated proof with ZKP is typically
designed to have a small size and can be efficiently verified.
This makes ZKP methods suitable as an off-chain approach,
since the on-chain verification can be a lightweight task.

An assumption about using VC-based methods is that the
program (which corresponds to the function f(·) mentioned
above) needs to be public for ML on Chain tasks; the program
is known to both the prover and verifier. This is typically the
case for ML on Chain since the program corresponds to a
public ML algorithm. The exceptions are cases when the used
ML algorithm is proprietary.

Verifiable computing can be used in a variety of applica-
tions, including secure cloud computing, secure multi-party
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Fig. 6: Voting-based method illustration.

computation, and secure outsourcing of computations. It can
also be used to ensure the integrity of computations performed
in areas such as financial analysis, scientific research, and
machine learning.

2) Multiple party-based approaches: The idea of multiple
party-based approaches is to leverage multiple nodes to prevent
a subset of potentially malicious nodes (referred to in the lit-
erature as byzantine nodes [34]) from threatening the integrity
and correctness of results. The main assumption held by this
group of solutions is that the number of malicious nodes (or
failures) is bounded. This is most typically defined as assuming
that no more than f byzantine nodes—out of a total n nodes
where n > f—are part of the system. Another assumption
in this approach is that off-chain nodes cannot fake new
identities. This is important to prevent sybil attacks where a
byzantine node acts with many fake identities. Typical multiple
party-based approaches include voting-based methods [22] and
incentive-based methods [13].
Voting-based method. In this group of methods, a number
of off-chain nodes are asked to train a model with the same
dataset and configuration. Then, the trained models from the
off-chain nodes are collected. If there are enough received
identical models, then the model is approved. This method
works if the number of responses r for a given model is larger
than f . In the following, we briefly describe a baseline voting-
based method.

Assume that there are 2f+1 nodes where f is the maximum
number of byzantine nodes. The baseline solution to deal with
byzantine nodes is to obtain the answers from multiple nodes.
A collection of 2f + 1 nodes can submit their models to the
smart contract. When the smart contract receives f+1 identical
responses with model M , the smart contract returns M as the
result. Since there are at most f malicious nodes, the returned
M must be the outcome of correct computation.

The reason we need 2f + 1 off-chain nodes instead of
only f + 1 off-chain nodes is that byzantine nodes may act
maliciously by being unresponsive. In such a case, if there
is less than 2f + 1 nodes, and f nodes out of them are
unresponsive they can block the whole system. Note that
2f + 1 is also less than the typical number of nodes used in



byzantine agreement, which is 3f+1 [34]. This is because the
smart contract is a trusted party that disseminates information
and collects votes. Therefore, unlike a traditional byzantine
agreement protocol, nodes in a voting-based off-chain method
are not trying to reach agreement on values—rather, they are
only providing the outcome of a predefined computation that
is disseminated and collected by a trusted party.

Figure 6 illustrates the baseline solution discussed above.
A user sends requests to the nodes in order to generate a ML
model. These n nodes will train the models independently and
send their models to the smart contract on blockchain. The user
needs to specify the ML workflow and the relevant parameters
with which a node can generate the ML model. The supplied
information must be enough for the ML training process to
be deterministic. This deterministic nature of computation by
off-chain nodes is important since any variations/randomness
would lead to different final outcomes.

A challenge in the voting-based method is that an off-chain
node may observe the response of another node and copy
it—therefore, sending a response without having to make the
computation. Off-chain nodes may be incentivized to do this
as they would get the monetary reward of participating in
ML training while not having to put resources for the actual
computation. To overcome this problem, the nodes are required
to send the signatures of their results to the smart contract to
indicate that they already got the results. The nodes send the
their outcome after the signatures of every node are received
by the smart contract. In this way, an off-chain node cannot
steal another node’s response as the response will not match
with the signature it sent previously.

Incentive-based methods. Incentive-based methods borrow
concepts from game theory and mechanism design. The key
idea of incentive-based methods is to encourage the off-chain
participants to publish correct results to maximize their own
profits. In such a setting, multiple off-chain nodes compete
to submit their answers (trained ML model) to the smart
contract. The first to submit their answer wins a reward. To
check whether the submitted answer is correct, other off-chain
nodes can challenge it. In the case that a submitted answer is
incorrect, a challenger would get the reward of the answer
instead of the first node that submitted the wrong answer.
For this approach to work, there is a need for a challenge
period after the answer is submitted to allow off-chain nodes to
challenge the correctness of the answer. Only after an answer
has been unchallenged for this challenge period, then it would
be considered safe.

Figure 7 shows the framework of the incentive-based
method. A solver first sends the results of a computation task
to the smart contract. Then, a challenger node sends the cor-
rected results with evidence if a wrong result is detected [13].
Then, the smart contract judges whether the challenge is valid.
If yes, the challenger node will then play the role of a solver.
This process continues until no challenger nodes challenge the
current results.

An example of this approach is in TrueBit [13], where the
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Fig. 7: Incentive-based method illustration.

task is to compute the product of two matrices A and B.
The Solver submits the answer C claiming that A× B = C.
The Challenger can challenge an incorrect answer by pointing
to an error in one of the entries of C. Specifically, the
Challenger shows that ci,j is not computed correctly, i.e.,
ci,j 6=

∑m
k=1 ai,k · bk,j . The challenger provides correspond-

ing evidence that includes partial sums d0, d1, · · · , dn where
dn =

∑n
k=1 ai,k · bk,j . The smart contract verifies that i, j

are coordinates, dn 6= ci,j and d0 = 0. If this does not
hold, the challenger loses. Next, the solver can defend their
answer by providing k such that dk 6= dk−1 + ai,k · bk,j .
In this way, the smart contract only verifies the relationship
between two consecutive partial sums are correct or not instead
of calculating

∑n
k=1 ai,k ·bk,j . The Solver wins the game if the

smart contract can verify this claim; otherwise the Challenger
wins.

Another well-known example using the incentive-based
method is the rollup [47], a layer-2 solution that aims to
increase the scalability of the underlying blockchain by re-
ducing the amount of data that needs to be processed and
stored on-chain. Typical rollups include optimistic rollups, zk
(zero knowledge) Rollups, and validium Rollups.

To perform a rollup, the smart contract first receives a batch
of transactions from participating users. These transactions
are typically grouped together based on some criteria, such
as the type of asset being transferred or the identity of the
sender. Next, the smart contract processes the transactions
by executing the relevant logic and updating the state of
the blockchain. For example, if the transactions involve the
transfer of a digital asset, the smart contract would update
the balance of the relevant accounts to reflect the transfers.
Once the transactions have been processed, the smart contract
creates a new transaction that summarizes the results of the
rollup. This summary transaction, also known as a proof, is
recorded on the main blockchain, along with any relevant
metadata such as the block height and the root hash of the
rollup.

Distributed Byzantine ML (DbML for short). Distributed
Byzantine machine learning refers to ML algorithms that are
implemented in a distributed computing environment and are
resilient to Byzantine failures. In a distributed computing



system, there may be multiple nodes, or computers, that are
working together to perform a computation. However, due
to various reasons, some of these nodes may fail or behave
maliciously, a scenario known as a Byzantine failure.

Distributed byzantine ML [48], [49], [50] was originally
proposed to scale to large dataset and shorten the training time
in byzantine distributed systems. Figure 8 illustrates a simple
workflow of distributed byzantine ML. In distributed byzan-
tine ML, the whole dataset is divided into N data samples
where N is the number of nodes or machines. Distributed
implementations of byzantine Stochastic Gradient Descent
(SGD) typically takes the following form: a single trusted
parameter server is in charge of updating the parameter vector,
while the—potentially malicious—nodes perform the actual
update estimation, based on the local data it possesses. More
specifically, the parameter server executes learning rounds,
during each of which, the parameter vector is broadcast to the
nodes. In turn, each node computes an estimate of the update
to apply (an estimate of the gradient), and the parameter server
aggregates their results to finally update the parameter vector.

DbML assumes that there are byzantine nodes which may
send malicious gradients to the parameter sever. Byzantine
failures can occur when some of the machines in the system
provide incorrect or malicious data to the learning algorithm.
This can lead to incorrect or biased model outputs, which can
have serious consequences in real-world applications.

The core idea of the distributed byzantine ML is to filter
out malicious or incorrect data (or gradients) from poten-
tially byzantine nodes, while prohibiting byzantine nodes
from flooding the parameter server. Successful filtering of
malicious input enables arriving to a correct model—with
assumptions on the number of byzantine nodes f . Specifically,
there are two kinds of approaches to addressing Byzantine
failures in DbML. One approach is to use robust aggregation
techniques that allow the system to identify and exclude faulty
or malicious nodes from the computation. Another approach
is to use techniques such as consensus protocols or verifiable
computing to ensure the integrity of the computation.

DbML can be used in a variety of applications, including
distributed training of ML models and distributed evaluation
of ML algorithms. It is particularly useful in scenarios where
the availability and reliability of the nodes in the distributed
system cannot be guaranteed, such as in large-scale distributed
systems or in systems with untrusted nodes.

In ML on Chain, distributed byzantine ML can be used by
considering the smart contract as the parameter server and the
off-chain nodes as the worker nodes computing gradients.

IV. OFF-CHAIN METHODS ANALYSIS

In this section, we present an analysis and discussion of the
five off-chain approaches we described in the previous section.
We consider the following aspects: trust assumptions, result
integrity, and privacy. Table I summarizes the discussions. In
addition to the analysis provided in this section, we present
more discussions that are related to practical and performance-

Node 1

Node 2

Node n

…
…

Splitting
Data

Sending
 gradients 

Data

Dataset 1 

Dataset 2 

…
…

Dataset n

Smart 

Contract

Off-chain On-chain 

(Parameter Server) 

Fig. 8: Distributed byzantine ML illustration.

related aspects in Sections V (evaluation section) and VII
(conclusion and future directions section).

A. Trust Assumptions

VC-based methods realized in the form of zk-SNARKs
typically need a trusted setup. The trusted setup refers to
generating an explicit representation of the relation so that
the verifier knows exactly what is being proven. This requires
a trusted third party for the trusted setup. Multiparty com-
putation (MPC) is often used in order to reduce the trust
assumptions. Ideally, such a MPC involves a large number of
nodes, and ensures that if at least one node behaves honestly,
then the result is secure. After the trusted setup, the VC-
based methods do not need trusted nodes any more for later
computations. Some variants of the VC-based method does
not need a trusted setup; however, they often suffer from high
overheads of proof generation or verification [46].

The trust assumption of enclave-based method is that the
manufacturer which provides the service is trusted [42]. This
kind of trust is two-folds. First, we trust that the enclaves
provided by the hardware manufacturer are safe so that pro-
gram can not be tampered with when running in the enclaves.
Second, we trust that the hardware manufacturer can honestly
certify that the results originate from a secure enclave running
the correct off-chain program.

DbML can tolerate f byzantine nodes with a set of n nodes
in total where f is known. The state-of-the art DbML method
[48] ensures resilience against a system with at most one third
of the nodes being byzantine. But, when there are more than
one third byzantine nodes, it can still achieve the convergence
guarantee in term of ergodic convergence.

The voting-based methods can tolerate at most f byzantine
nodes, when there are 2f + 1 nodes in total. The incentive-
based method assumes that the off-chain nodes (participants)
are rational in the sense that they act to maximize their
individual profits. If nodes want to maximize their profits,
it means that a node will not be incentivize to lie and that
challengers are incentivized to challenge. Particularly, the
off-chain nodes expect fair compensation for their work on
the computation task. Another implicit assumption of the



TABLE I: Comparison between off-chain solutions for ML training and inference.

Trust Assumption Result Integrity Data Privacy

Enclave-based A trusted manufacturer Guaranteed Yes

VC-based No trusted assumption or with at least 1 honest node for trusted setup Guaranteed Yes

Incentive-based
Nodes are rational to maximize their individual profits and at least a
single challenger is available Partially guaranteed No

Voting-based The maximum number of byzantine nodes f is known Guaranteed No

DbML The maximum number of byzantine nodes f is known Partially guaranteed Yes

incentive-based method is that at least a single challenger is
available.

B. Results Integrity

The enclave-based method to guarantee the integrity of the
results as long as the enclave are secure and the manufacturer
is honest. Theoretically, the VC-based method cannot 100%
guarantee the integrity of the results. However, it guarantees
the integrity of the results with overwhelming probability
(extremely close to 100%). The incentive-based method guar-
antees the integrity of the results as long as the challengers
can point out any errors in the results. However, this does
not always hold even the challengers are incentivized to
challenge in practice. Therefore, the result integrity of the
incentive-based method is partially guaranteed. The voting-
based methods can achieve integrity of the results if there
are no more than f byzantine nodes which is explained in
Section III-C2. The DbML can only guarantee partial integrity
of the results. Specifically, the results generated by DbML are
only based on the datasets held by the honest nodes since the
results submitted by the byzantine nodes will be filtered.

C. Privacy

From the view of the user requesting the ML task (called
req-user), none of the five methods can guarantee the privacy
of the datasets, ML models and predictions. Since the datasets,
ML models and predictions are required to be sent to the smart
contracts by the req-user, they are public to all blockchain
users. There are some techniques [51] that can encrypt the
inputs if the req-user want to protect the privacy of their
datasets. These techniques are orthogonal to the ML on Chain
approaches and can be applied to preserve information privacy.
These techniques, however, may introduce some challenges
in terms of performance overhead and/or impacting model
accuracy negatively.

From the view of the off-chain node, all the five methods
cannot guarantee the privacy of ML models and predictions as
the models and predictions are eventually stored in smart con-
tracts. However, the privacy of the datasets may be preserved
in enclave-based, VC-based and DbML methods.

Enclave-based methods do not need to expose the inputs
to others except for the manufacturer. As long as we trust the
manufacturer, the privacy of inputs is guaranteed. Enclaves are
used to protect the confidentiality of sensitive data by execut-
ing computations on the data within the enclave. This ensures

that the data is not visible to anyone outside the enclave, and
that it cannot be accessed or modified by unauthorized parties.

The VC-based method can protect the privacy of inputs
of the ML tasks. This includes ZKB-based methods which
can take both public inputs and private inputs for a request.
ZKB provides a way for one party to prove that they know
something without revealing what that something is, which
protects the privacy of sensitive data in a variety of situations.
However, directly setting the sensitive data as a private input
may not lead to the correct result for ML on Chain tasks.
For example, if the dataset is taken as the private input for
ML training task, the ZKB-based method can prove that there
exists a dataset (i.e. our private dataset in this case) such that
the model is the output after training. Nevertheless, this proof
does not indicate that the model is the output obtained when
running it on the specific dataset (i.e. our private dataset). To
this end, for ML on Chain tasks, the off-chain node needs to
prove that the input data is consistent, e.g., with some public
commitment that others trust is a commitment to the off-chain
node’s dataset. Therefore, both the dataset consistency proof
and the integrity of models (or predictions) should be proved
if the off-chain node needs to protect the privacy of the private
dataset.

In DbML, participating off-chain nodes train a model on
their own dataset and then send the model updates back
to a central server. This process helps protect data privacy
because the data never leaves the control of participating off-
chain nodes. The model updates are sent to the the smart
contract, but the data itself is not shared. This means that
the off-chain nodes can collaborate on ML tasks without
exposing sensitive data to others. However, it is possible that
the gradients of DbML could leak information about the data
used to compute them because they are derived from the data
and contain information about the patterns and relationships
present in that data [52]. For example, if the model is able to
accurately predict the development of the medical condition,
it is likely that the gradients will contain information about
the patterns and relationships in the data that were used to
make those predictions. This could include information about
the relationship between certain medical conditions and certain
demographic characteristics, such as age or gender.

For the voting-based methods, the privacy of the inputs can
not be guaranteed. This is because each node has to take
the same inputs so that all the honest nodes can generate



the same outcomes. Therefore, the inputs are public to all
nodes. Similarly, the incentive-based methods need to keep
data public so that challengers and solvers can performed the
tasks related to challenging and defending answers.

Privacy is a crucial aspect for ML on Chain tasks. When the
req-users cannot provide ML training algorithms or models,
the off-chain nodes need to propose their own solutions. If
the off-chain nodes do not want to make their solutions public
to others (referring to taking the ML training algorithms and
models as inputs), the two multiple party-based methods—
voting-based and incentive-based methods—are not applicable
for such tasks.

D. Storage

The datasets for training and inference take up a lot
of storage for ML tasks. While storing these datasets on
blockchain is impractical, existing applications often use a
decentralized storage system with redundancy, e.g., IPFS [53],
SWARM [54], Storj [55], and Sia [56], to improve the integrity
and availability of the datasets.

One key advantage of decentralized storage systems is that
they can be more resilient to failures or attacks, as the data
is distributed across multiple nodes and can be accessed from
any node on the network. This can make decentralized storage
systems less vulnerable to data loss or downtime due to server
failures or other issues. Decentralized storage systems can also
offer greater privacy and security for users, as the data is not
stored in a central location that can be easily accessed by
third parties. In addition, decentralized storage systems may
offer users more control over their data, as they can choose
which nodes to store their data on and have more visibility
into how their data is being used. These systems use various
technologies and approaches to achieve decentralized storage,
including distributed hash tables, blockchain technology, and
peer-to-peer networking.

V. EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of
the different ML on Chain approaches we discussed.

A. Setup

Experimental setup. our experiments are performed on the
Ethereum Goerli test network, which now has switched to
proof-of-stake (PoS). We implement the on-chain components
using solidity smart contracts, and implement off-chain com-
ponents using python and C++. Software and libraries that we
use for specific approaches are mentioned later in the section.
The experimental environment is a computer with a Quad-
Core Intel Core i5 processor, 8GB memory, running macOS
Catalina. We use ZoKrates [12] to implement a zkSNARKs-
based approach. The Groth16 [57] scheme is used to derive
proofs with a small size.

ML models. We experiment with three ML models: Lo-
gistic Regression, k-NN (k-nearest neighbors) and Neural
Network. Logistic Regression is a generalized linear model
which is represented by the coefficients in linear combination.

k-NN is a non-GD based model where the label of an object
is based on the values of the k nearest neighbors. Neural
Network is a non-linear model using interconnected group of
neurons for computation.

k-NN model does not have a real training phase. This is
because the prediction of each new data item is calculated
based on all existing data items rather than a trained model.
In other words, the inference of k-NN includes both training
and inference phases. Neural Network is popular because of
its high accuracy; however, training a Neural Network takes
a lot of computation overhead. Our experiments with the
above three models tend to show the concerns and challenges
when we design decentralized applications with different ML
models.

Datasets: To give us more flexibility to evaluate performance
and monetary cost, we use a synthetic dataset in most ex-
periments. Using a synthetic dataset allows us the flexibility
arbitrarily vary the experiments conditions such as the number
of features and data samples. We also perform an evaluation
with two real datasets in Section V-F.

Compared approaches. We compare an on-chain ML base-
line and five off-chain methods. Each off-chain method repre-
sents one of the groups we presented:

• SGX-based: We use the Software Guard Extensions
(SGX) secure enclaves for the enclave-based methods.

• zkSNARKs-based: We select a zkSNARKs-based ap-
proach (with ZoKrates [12]) from the VC-based methods
for experimenting as zkSNARKs have a small proof size
and low verification cost.

• Incentive-based: We implement a representative
incentive-based solution that mimics the three-phase
evidence-challenge pattern of TrueBit [13]. We set
the evidence length statically to be 100 characters.
The specific length depends on the evidence-challenge
strategy and used ML model.

• Voting-based: We use the baseline voting-based method
described in Section III-C2. The smart contract receives
the results with signatures from off-chain nodes.

• Parameter server-based (ParameterS-based for
short): Instead of using a traditional server in
DbML [48], we take the smart contract as the parameter
server maintaining the ML model.

We set the number of off-chain nodes to 9 for multiple
party-based methods (i.e. incentive-based, voting-based and
ParameterS-based methods). We set the rounds of information
exchange for the incentive-based method to 5.

Default parameters. Unless we mention otherwise, the num-
ber of features is set to 10 and the number of data samples
for inference is set to 100. The number of epochs for training
Logistic Regression and Neural Network is 10. The number
of layers for Neural Network is 3.

Cost. In Ethereum, on-chain execution and verification cost is
calculated in a unit called gas. For ease of exposition in the rest
of this section, we also present the cost in dollars. Because the
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Fig. 9: On-chain execution cost for on-chain training.
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Fig. 10: On-chain execution cost for on-chain inference.

gas-dollar conversion rate fluctuates, we make the following
assumption about the price of gas. We assume the base gas
price as 20 Gwei2 according to recent approximate pricing on
Ethereum Mainnet at the time of writing this paper. We also
assume that the price of one ether is equal 1500 dollars.

B. On-chain execution cost evaluation

We evaluate the cost of training and inference for on-chain
solutions of Logistic Regression, k-NN and Neural Network
models. Figure 9 illustrates the gas fees (dollars) for three
ML models in terms of training. The cost of on-chain training
increases almost linearly with the size of the training samples
and the size of features. The k-NN model does not have
a training phase; its cost is set to 0. The cost of Neural
Network is much higher than that of Logistic Regression due
to its higher training complexity when the number of training
samples or features increases. This indicates that the on-chain
cost almost linearly increases with the algorithm’s complexity
for training.

Figure 10 shows the cost of the three ML models for
inference. As the inference for the k-NN model is not preceded
with a “training” phase, its cost is significantly higher than
both Logistic Regression and Neural Network especially when
the number of training samples and features become large.
The cost for a single data item inference is relatively cheap
for Logistic Regression and Neural Network models. However,
the number of data items for inference in practice can be quite
large, leading to quite high fees.

2Gwei is a denomination of Ethereum’s ether (ETH). A gwei is one-billionth
of one ETH.
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Fig. 11: On-chain verification cost for Logistic Regression
training.
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Fig. 12: On-chain verification cost for Neural Network train-
ing.

C. On-chain verification cost evaluation

Training. Although off-chain methods do computation with
off-chain machines, they need to send the computation results
to the smart contract for verification. We show the components
of on-chain verification cost in Table II. Since k-NN does not
have a training phase, we do not include it in the table.

As can be seen from the subfigures on the left of Figures 11
and 12, the on-chain verification cost is a constant with
respect to the number of data samples for training tasks. This
is because increasing the number of training data will not
change the size of the model (i.e. the number of coefficients
or parameters). As the models need to be stored in the smart
contract, the minimal verification cost (which is quite close
to that of the SGX-based method) for the five methods is
for receiving (or storing) the models. The ParameterS-based
method gets the highest cost for both Logistic Regression and
Neural Network as it needs to store multiple rounds of gradi-
ents (left part of Figure 11). Because the large size of Neural
Network models compared to Logistic Regression models, the
cost of the parameter server-based method for Neural Network
is much higher than that of Logistic Regression (Note that the
size of gradients equals to that of Neural Network models).

The subfigures to the right of Figures 11 and 12 show that
when the number of features increases, the cost of all the five
methods grows. This is because the size of the model increases
which means that more is stored/communicated to the smart
contract. The incentive-based, voting-based and ParameterS-
based methods have the highest verification cost because
the smart contract needs to store the models received from



TABLE II: Main factors that affect the on-chain verification and off-chain running time for five off-chain methods.

On-chain verification cost Off-chain running time

SGX
Receiving and storing the results with a certificate from a
single node

(1) Running time for the program in SGX-based enclaves
(2) Time for creating the enclaves and data exchange between
enclaves and outside environment

zk-SNARKs Verifying the received proof from a single node (1) Time for proof generation
(2) Time for keys generation

Incentive
(1) Receiving and storing results from a single node
(2) Receiving and storing evidence from a single node in
multiple rounds

Sum of the running time for each round of challenge

Voting
(1) Receiving and storing results and signatures from multiple
nodes
(2) Similarity computation for models and predictions

Maximal running time of the program execution in multiple
nodes

ParameterS
(1) Receiving and storing gradients and models from multiple
nodes
(2) Maintaining or updating the ML model

Sum of the maximal running time of the program execution
in multiple nodes for each round of updating
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Fig. 13: On-chain verification cost for three ML models
inference. (The cost of the three models is the same.)

multiple nodes. Since the ParameterS-based method needs to
store the gradients from multiple nodes in multiple rounds, and
the number of gradients increases with the number of features,
it has the highest cost. The SGX-based method only incurs
the cost of storing one model therefore it has the lowest cost.
The zk-SNARKs-based method also shows low verification
cost and approaches the cost of the SGX-based method when
the number of features is large. Compared with the cost with
Logistic Regression models, Neural Network training incurs
more cost because the model has a larger size.

Inference. We report the verification cost for four meth-
ods without including ParameterS-based. This is because
ParameterS-based handles the training process only, and the
resulting ML model can then be utilized for inference in any
of the four other off-chain approaches. For all methods, the
verification cost does not change when varying the number
of features. This is because the size of predictions does not
change with a different number of features. Table III shows
the on-chain verification cost for inference task with three ML
models. While the incentive and voting-based methods need
to store the multiple predictions, they take relatively high cost
compared to the SGX and zk-SNARKs-based methods. The

TABLE III: On-chain verification cost for inference (in dollars)
with three ML models (for 100 data samples).

Logistic
Regression

k-NN Neural
Network

SGX 7.045 7.045 7.045
zk-SNARKs 10.465 10.465 10.465

Incentive 35.225 35.225 35.225
Voting 63.405 63.405 63.405

TABLE IV: Off-chain running time (in seconds) for Logistic
Regession training with different amounts of training samples

100 500 1000 5000 10000

SGX 0.059 0.066 0.070 0.074 0.079

zk-SNARKs 0.530 14.611 41.869 1315.43 6754.27

Incentive 0.031 0.039 0.064 0.709 0.109

Voting 0.006 0.007 0.012 0.014 0.021

ParameterS 0.004 0.005 0.006 0.008 0.011

cost of zk-SNARKs-based method take around 50% more than
SGX-based method as its verification cost is also linear with
the size of the input (the size of its input is 100 in the table).
The cost of SGX is mainly due to storing the predictions
(results).

Figure 13 shows that the verification cost increases for
all the four methods under the three ML models when the
number of data samples increase. This is because the size of
predictions increase almost linearly with the number of data
samples. The cost for all the three ML models is the same.
The SGX and zk-SNARKs-based methods achieve a low cost
compared to the other methods as the smart contracts in these
two methods only need to store predictions from a single node
once.

D. Off-chain running time evaluation

In this section, we measure the off-chain running time
of the solutions we compare. Because zk-SNARKs-based



TABLE V: Off-chain running time (in seconds) for Neural
Network training with different amounts of training samples

100 500 1000 5000 10000

SGX 0.057 0.081 0.096 0.185 0.269

zk-SNARKs 6.484 75.522 264.30 6523.21 26378.93

Incentive 0.083 0.156 0.183 0.556 1.143

Voting 0.021 0.042 0.055 0.131 0.219

ParameterS 0.011 0.025 0.034 0.054 0.115

TABLE VI: Off-chain running time (in seconds) for k-NN
inference with different amounts of training samples

100 500 1000 5000 10000

SGX 0.061 0.063 0.063 0.068 0.076

zk-SNARKs 0.215 0.537 1.968 60.35 268.38

Incentive 0.004 0.011 0.036 0.109 0.189

Voting 0.001 0.002 0.006 0.022 0.038

methods take significantly high running time when the model
is complex, we set the number of epochs to 1 for Logistic
Regression and Neural Network training for evaluating the five
off-chain methods. In this way, we can show the characteristics
of running time for zk-SNARKs when the computation task
is light.

Training. We summarize the key factors that impact the
off-chain running time in Table II and show the results in
Tables IV to VII. Table IV shows the results for Logistic
Regression training; in multi-node solutions, we report the
maximal running time in all the nodes. The voting-based
method has the least running time since its computation is
often completed in parallel with multiple nodes. The incentive-
based method need to sequentially propose challenges, there-
fore its running time is nearly n times of that of the voting-
based method where n is the number of nodes. For the SGX-
based method, we load the whole dataset into the enclave
only once (we discuss this more later in the paper). The
SGX-based method takes a little more time than the voting-
based method as it needs to create an enclave. The zk-
SNARKs-based method has a relatively small running time
when the dataset is small; however, its running time increases
significantly with the number of training samples.

A trend similar to the above results with Logistic Regression
is also observed for Neural Network training as illustrated
in Table V. Because the ParameterS-based method splits the
dataset for processing and computing, it has the least running
time. The zk-SNARKs-based method takes more time for Neu-
ral Network than Logistic Regression with the same dataset
as Neural Network has higher complexity. Table VI shows the
off-chain running time for k-NN inference when predicting a
single data sample. Because k-NN performs the virtual training
phase when predicting a data sample, the results shown in
Table VI can be taken as the training time for the four

TABLE VII: Off-chain running time (in seconds) for Logistic
Regression inference with different amounts of prediction
samples

100 500 1000 5000 10000

SGX 0.059 0.062 0.065 0.072 0.079

zk-SNARKs 0.163 0.498 2.836 58.45 427.73

Incentive 0.004 0.021 0.041 0.118 0.206

Voting 0.001 0.004 0.008 0.023 0.042

TABLE VIII: Off-chain running time (in seconds) for Neural
Network inference with different amounts of prediction sam-
ples

100 500 1000 5000 10000

SGX 0.064 0.073 0.081 0.134 0.189

zk-SNARKs 0.327 0.752 108.95 1396.21 6076.84

Incentive 0.024 0.092 0.159 1.408 0.541

Voting 0.005 0.018 0.032 0.083 0.128

off-chain methods. Compared with Logistic Regression and
Neural Network training, k-NN takes less time for training
for all the four off-chain methods.

Inference. As the ParameterS-based method is not appli-
cable for inference, we show the running time for the other
methods in Table VI to VII. The running time with the zk-
SNARKs-based method is always much longer than others.
While the off-chain running time for Logistic Regression
inference seems close to that of k-NN by comparison between
Table VI and Table VIII, it does not mean that k-NN inference
is as cheap as that of Logistic Regression. Table VI illustrates
the running time for predicting a single prediction sample (note
that we vary the number of training samples rather than the
number of prediction samples in Table VI), while Table VIII
shows the running time for different amounts of prediction
samples. Table VII indicates that the Neural Network inference
takes more time than that of the Logistic Regression inference
because the more complexity of Neural Network models. All
in all, the cost of ML inference becomes considerable when
the prediction samples are large, even though the cost of ML
inference for a single prediction sample is little relatively.
Besides, the zk-SNARKs-based method always takes much
more time than the other three methods.

E. Scalability and trade-off evaluation

We now evaluate the scalability and trade-offs for the five
off-chain methods.

SGX-based: When the dataset becomes quite large, ML
models are usually trained in batches. In this case, data is
frequently loaded to the enclave. One round of data exchange
represents that the data is loaded to the enclaves once. Fig-
ure 14 shows that the time cost almost linearly increases
with the batch size (i.e. the number of data samples) and the



TABLE IX: Cost evaluation for the PrameterS-based method
on Neural Network training (with 40K training samples ) with
differet numbers of off-chain nodes.

# of off-chain
nodes 4 8 12 16

On-chain
verification cost

(in dollars
) 30.096 60.192 78.288 120.384

Off-chain
running time
(in seconds)

4.883 2.452 1.626 1.218
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Fig. 14: The scalability of SGX-based method (the default
number of data samples is 10000 for figure (a) and data
exchanges is 1000 for figure (b).

number of rounds of data exchanges. Either 100 thousands
data exchanges with 10 thousands data samples or 1000 data
exchanges with 1 million data samples take no more than 6s.

zk-SNARKs-based: The ML training algorithm often in-
cludes multiple epochs of iterations. As can be seen from
Figure 15(a), the running time for generating proofs increases
significantly when the number of epochs become larger. One
way to overcome this overhead is to split the training tasks
into several subtasks. For example, each epoch of computation
is taken as a subtask and we denote the proof size as one
unit for an epoch of computation. In this way, as shown
in Figure 15(b), the running time for the whole task can
be significantly reduced while the on-chain verification cost
grows in a slower pace.

Voting-based: The on-chain verification cost of the Voting-
based method includes two parts. One is the cost for receiving
models or predictions from multiple nodes (9 in our experi-
ments), the other one is for computing the similarity between
models or predictions. Figure 16 shows that the cost of storing
results (i.e. models and predictions) for training and inference
tasks is always higher than that of similarity computation. And
the cost of model/prediction similarity computation becomes
negligible compared with the model/prediction storage cost
when the number of features/samples becomes large.

The ParameterS-based method has the lowest off-chain
running time; however, increasing the number of off-chain
nodes will also increase the on-chain verification cost nearly
linearly. This observation can be seen from Table IX. In
addition, when the number of off-chain nodes increases, the
off-chain running time reduces as each off-chain node trains
on a smaller dataset (assuming that the whole dataset is split
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Fig. 15: The trade-off of the zk-SNARKs-based with Neural
Network.

20 40 60 80 100
# of feature

0.0

0.5

1.0

1.5

2.0

on
-c

ha
in

 v
er

ifi
ca

tio
n 

 c
os

t (
in

 g
as

)

1e7 Training task

200 400 600 800 1000
# of data samples

0.0

0.5

1.0

1.5

2.0

on
-c

ha
in

 v
er

ifi
ca

tio
n 

 c
os

t (
in

 g
as

)

1e8 Inference task
Model similarity computation Results storing (receiving)

Fig. 16: The comparison between model similarity compu-
tation and model storing for the voting-based method with
Neural Network.

uniformly into small dataset and each off-chain node will be
assigned with a small dataset).

For the Incentive-based method, both the on-chain verifi-
cation cost and off-chain running time rely on the number of
challenges that appear. If every challenge takes the same on-
chain cost, then the overall on-chain cost is linear with the
number of challenges. However, it is difficult to predict what
a challenge will look like for a specific ML task.

F. Evaluation with real datasets.

We evaluate the impact of real datasets in terms of on-
chain execution cost and on-chain verification cost. Due to
the space limit, we only show the results of training a
Neural Network. The first real-world dataset, Amazon Access
Samples (Access for short) [58], is an anonymized sample
of access provisioned within the company. It contains more
than 710K data samples. We use two numeric features in the
dataset for the evaluation.The second real-world dataset, 3D
Road Network (Road for short) [59], includes 3D road network
with highly accurate elevation information. It contains 430K
data samples. For a fair comparison, we create two synthetic
datasets (all the values are set as 1) with the same size (both
the number of features and training samples) of the two real
datasets.

As can be seen from Table X, the difference between the
average on-chain execution cost is negligible (less than 0.1%).
The two real datasets have large values compared with those in
the synthetic dataset, therefore leading to a little higher cost.
The on-chain verification cost is similar with both real and



TABLE X: Evaluation with two real datasets in term of cost
(in gas). The on-chain execution cost is about the average cost
of a single data sample. The SGX-based method is used for
on-chain verification cost evaluation.

# of features
for training Dataset On-chain

execution cost
On-chain

verification cost

2
Access 16954731 382918

Synthetic 16954452 382918

4
Road 23082410 666267

Synthetic 23063714 666267

synthetic datasets. This is because the parameters of models
all fall in the range (0, 1) no matter which values the datasets
have.

VI. RELATED WORK

ML on Chain. To the best of our knowledge, there is no
prior work that shares the goal of this paper—i.e., providing
a taxonomy and understanding of the space and design trade-
offs of performing machine learning in blockchain applica-
tions. Existing work that is most relevant to ML on Chain
tasks utilize ML for solving blockchain related problems
without discussing the integrity and/or cost of executing ML
programs [60], [37], [61], [7], [62], [8]. Others propose
blockchain systems with relaxed security/trust guarantees to
enable computation-intensive and storage-intensive tasks to be
performed on chain [63], [64], [65], [66], [67]. While some
works [39], [68] summarize general off-chain approaches, they
do not target ML on Chain and lack quantitative analysis with
experiments.

The five off-chain approaches we considered in ML on
Chain have been also used or proposed for problems other
than blockchain-based applications. The voting-based and
incentive-based methods are often used for solving truth
finding problem in the context of web applications [69],
[70] and crowdsourcing [71], [72]; in these works, they are
combined with probabilistic models, monetary rewards and/or
punishment. The enclave-based and VC-based methods are
usually utilized when both confidentiality and integrity need
to be guaranteed. The use cases include ML applications [73],
databases [74], and cloud computing [75]. DbML is particu-
larly used for ML training [41] when the datasets need to be
confidential or the dataset is too large to train efficiently.

Off-chain scaling and computing solutions. Off-chain
scaling solutions are methods for increasing the capacity
of a blockchain beyond its current limits. Off-chain scaling
solutions related to ML on Chain mainly include blockchain
oracles and layer-2 solutions. Blockchain oracles [76], [77],
[78] are trusted third parties that constitute the interface
between blockchains and the real world. The techniques used
for guaranteeing the integrity of the data from real world in
blockchain oracles can be covered by the five kinds of off-
chain solutions we considered.

Layer-2 solutions [79] are built on top of the main
(or layer-1) blockchain. Typical layer-2 solutions consist of
Plasma [80] sidechain [81] state channels [82] Rollups [83]
and TrueBit [13]. While each of these is solving a different
problem, these layer-2 solutions combine both off-chain state
and off-chain computations in arbitrary ways. In other words,
these layer-2 solutions are hybrid off-chain solutions which
are designed for improving the scalability of a specific task.

Different from layer-2 solutions, off-chain computing [39],
[68] operate in different ways and have different implications
for the underlying blockchain. In this work, the discussed five
off-chain methods are more related to off-chain computing.
Specifically, off-chain refers to the use of external computing
resources to perform certain tasks or process data that are
not directly related to the blockchain. This can include tasks
such as data storage, computation, and communication, which
are performed off the blockchain but may still be related to
transactions or data on the blockchain.

Surveys on discussing ML on blockchain. Some existing
surveys [63], [37], [84], [8], [85] investigate the ML techniques
and applications that are combined with blockchain. The key
insight of these works is that ML and blockchain can benefit
from each other. One one hand, these surveys demonstrate that
ML can help improve DApp operation and functionality [86],
[35], [36] and utilizing models to gain insights from collected
data [37], [61], [7], [62] at a high level. On the other hand,
these surveys broadly demonstrate that involving blockchain
in the process of ML training and prediction enables DApps
to utilize ML models to improve security, traceability, trans-
parency and accountability.

However, none of them investigate or evaluate the the
detailed solutions and trade-offs for implementing ML tasks
on blockchain. Our work, instead, provides a comprehensive
analysis of the ML on chain space and the various approaches
that can be utilized.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this section, we discuss the five ML on Chain off-chain
approaches in terms of their advantages, limitations and future
directions.

Encalve-based: The Enclave-based methods are the most
appropriate ones for computation-incentive tasks. They have
the lowest on-chain verification cost and introduce relatively
low overhead in terms of latency. The main issue of the
enclave-based computation is that the client or consumer has
to completely trust the manufacturer. Once the manufacturer
becomes byzantine, the integrity of the results can not be
guaranteed. In addition, the enclave-based scheme allows
universal computations but has potential security issues [87].

There are two potential directions in which enclave-based
methods could evolve in the future. One possibility is the
development of more advanced hardware-based security fea-
tures that can provide even stronger protection against attacks.
Another potential direction for the development of enclave-



based methods is the use of machine learning and artificial
intelligence (AI) techniques to enhance security.

VC-based: The non-interactive VC-based methods work
well when the task involves little computation. They have
relatively low on-chain verification cost. However, the general-
purpose VC-based methods take considerable time for gener-
ating the proofs when the program is computation-intensive.
While some works proposed customized VC-based methods
for dealing with specific tasks, such as decision trees [88] and
Neural Network inference tasks [89]. Some other works [90],
[91] aim to distribute the proof generation across machines
in a compute cluster. Although they still suffer from high
overheads or do not work for heavy computation tasks such
as ML training, our point of view is optimistic as the area of
efficient proof systems sees tremendous progress in terms of
real-world deployment [92].

One possibility to non-interactive VC-based methods in the
future is the development of more efficient and scalable zk-
SNARK constructions, which could make it more practical
to use these methods in a wider range of applications. For
example, it is possible to design customized non-interactive
VC-based methods and make trade-offs between overheads
of proof verification and proof generation for specific tasks
so that the proof generation overhead can be significantly
reduced.

Incentive-based: The incentive-based methods are widely
used on blockchain (e.g. Rollups [83] and TrueBit [13]).
They could have quite low on-chain verification cost when
the nodes are rational to maximize their individual profits.
Although some incentive-based approaches are proposed for
some specific tasks (e.g. matrix multiplication), enabling the
smart contract to judge the correctness of complicated compu-
tation tasks, such as ML training, still needs to guarantee both
the theoretical soundness and low overheads of verification.

There are two potential directions that the incentive-based
methods for ML on Chain may take in the future. First,
developers may work to improve the scalability of these
methods so that they can be used more widely as the incentive-
based methods can be resource-intensive for proposing and
verifying challenges, which can limit their scalability [93].
Second, there is likely room for innovation of creating different
models for how incentives can be structured for ML on Chain.
Such new models and structures, therefore, enable reducing
the size and computation overhead of evidence and challenges
efficiently.

Voting-based: The voting-based method have low off-chain
running time as the computation can be done in parallel. There
are three main limitations of the voting-based methods: (1) the
integrity of the results can not be guaranteed when the number
of byzantine nodes exceeds the predefined value. Although
increasing the number of nodes help mitigate this problem,
it also incurs extra overheads due to additional redundancy.
(2) the honest nodes may not deliver a deterministic result
for a specific ML task, leading to the failure of receiving

enough identical results (models). This can happen when there
are some randomness or non-specified parameters in the ML
algorithms. (3) the on-chain verification cost is quite high due
to storing multiple results.

As a future direction, we may aggregate the mod-
els/predictions on an off-chain node before sending it to the
smart contract. In this way, the on-chain verification cost can
be significantly reduced. Also, future voting-based methods
should be able to deal with randomness in ML so that they
can accept slightly different f +1 models. One technology in
that direction is the ability to judge if two models are similar
and trained on the same dataset even if the models are not
identical.

DbML-based: Using DbML-based methods is a favorable
approach when the datasets are owned by different users
who are not willing to share their datasets. This is because
the training process can be performed without coordinating
between the different users.

There is a number of limitations for DbML. First, although
DbML may guarantee convergence of the ML model, the
model is only trained based on the datasets hosted by the
honest nodes. Second, DbML-based methods are not applica-
ble to non-GD based ML algorithms when the algorithms do
not aim to optimize the loss functions. Some multiple-party
computation (MPC) protocols are proposed to enable a set of
nodes to jointly compute private inputs like DbML, they can
not guarantee safety and liveness without strong assumptions
on the number of corrupted nodes [94]. Third, most existing
methods assume that an honest majority can be guaranteed.
However, the number of malicious nodes are often unknown
in practice. Fourth, the DbML-based methods have potential
data privacy issues [95], [96] as data information may leak
via the public gradients. Lastly, the on-chain verification cost
of the DbML-based methods are quite high due to the cost of
storing multiple gradients.

Future directions that could be pursued in the field of DbML
for ML on chain include: (1) Developing ML algorithms
that are robust to Byzantine failures: We could work on
developing ML algorithms that are resistant to the influence of
Byzantine nodes, either by explicitly designing the algorithms
to be robust to such failures or by using techniques like
fault-tolerant consensus protocols to mitigate the impact of
Byzantine nodes. (2) Investigating the use of cryptographic
techniques in DbML: Cryptographic techniques such as secure
multi-party computation and homomorphic encryption [97]
could potentially be used to enable DbML in more secure and
private settings. In this way, off-chain nodes can aggregate
the gradients and only send the final models/predictions to the
smart contract, significantly reducing the on-chain verification
cost.

ML on Chain: Adopting ML on blockchain has the poten-
tial to enable a wide range of decentralized applications that
are more intelligent and efficient than those that rely solely on
blockchain technology.

The benefits for ML on Chain include: (1) Improved



decision-making and optimization: By integrating machine
learning with blockchain, it may be possible to build more
intelligent and efficient decentralized systems that are able to
make better decisions and optimize their operations. (2) In-
creased security and privacy: Machine learning on blockchain
could potentially be used to improve the security and privacy
of decentralized systems by enabling the use of secure multi-
party computation and homomorphic encryption techniques.
(3) Greater scalability: ML on blockchain could potentially
enable decentralized systems to scale more effectively by
allowing them to process large amounts of data and make
decisions more efficiently.

Neverthless, there are a few drawbacks for ML on
Chain including: (1) High complexity: Implementing ML on
blockchain can be a complex task, requiring expertise in both
ML and blockchain technologies. (2) Limited data availability:
The decentralized nature of blockchain systems can make
it challenging to access and use data for ML purposes. (3)
Potential for bias: As with any ML system, there is a risk that
ML on blockchain could be biased if the data used to train
the model is biased.

Future directions that could be pursued in the field of ML
on chain include: (1) Succinct requests: The format of the task
requests is non-trivial especially when the request takes large
datasets as input; for example, a ML inference request with
a large dataset. Directly placing the large size inputs to the
blockchain will incur high gas cost. Therefore, an economic
and effective way to represent the task request is crucial for
ML on Chain tasks. Utilizing decentralized storage might
be a good choice to overcome this overhead. (2) Succinct
outputs: Similar to reasons of succinct requests, we may look
for efficient ways to represent the outputs of ML models
or predictions; for example, we may store a digest of the
results or the compressed results on blockchain. (3) Devel-
opping efficient ML models: While performing a monolithic
ML task might take overwhelming overhead, breaking up a
monolithic ML computation into sub-tasks may significantly
reduce the overhead of off-chain computing methods. For
example, performing small ML computation with zk-SNARK
can be highly accelerated with low overhead [98]. Therefore,
we could work on developing efficient and scalable ML
algorithms, such as incremental ML [99], [100] and online
ML [101], [102]. (4) Hybrid Solutions: While each of the
five off-chain methods discussed in this paper have their own
advantages and drawbacks, there is likely room for innovation
of creating a hybrid solution by combining some of these five
off-chain computing methods. More indirect directions include
blockchain scaling [103], [104], storage optimization [105],
[106], [107], [108] and complex ML tasks [109], [110], [111]
on blockchain.

Overall, the ML on Chain field is still in its early stages
and there is a wide range of potential applications for this
technology. It is clear that ML on blockchain has the potential
to offer a wide range of benefits, but there are also challenges
that must be addressed in order to realize its full potential.
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[101] Ó. Fontenla-Romero, B. Guijarro-Berdiñas, D. Martinez-Rego,
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