
PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs
for Arbitrary SQL-Query Verification

Binbin Gu
Unversity of California, Irvine

binbing@uci.edu

Juncheng Fang
Unversity of California, Irvine

junchf1@uci.edu

Faisal Nawab
Unversity of California, Irvine

nawabf@uci.edu

Abstract
In database applications involving sensitive data, the dual imperatives
of data confidentiality and provable (verifiable) query processing are
important. This paper introduces PoneglyphDB, a database system
that leverages non-interactive zero-knowledge proofs (ZKP) to sup-
port both confidentiality and provability. Unlike traditional databases,
PoneglyphDB enhances confidentiality by ensuring that raw data
remains exclusively with the host, while also enabling verifying the
correctness of query responses by providing proofs to clients.

The main innovation in this paper is proposing efficient ZKP de-
signs (called circuits) for basic operations in SQL query processing.
These basic operation circuits are then combined to form ZKP cir-
cuits for larger, more complex queries. PoneglyphDB’s circuits are
carefully designed to be efficient by utilizing advances in cryptogra-
phy such as PLONKish-based circuits, recursive proof composition
techniques, and designing with low-order polynomial constraints. We
demonstrate the performance of PoneglyphDB with the standard TPC-
H benchmark. Our experimental results show that PoneglyphDB can
efficiently achieve both confidentiality and provability, outperforming
existing state-of-the-art ZKP methods.

Keywords
Zero-Knowledge Proofs, Database Security, Verifiable SQL Query,
Privacy-Preserving Databases

ACM Reference Format:
Binbin Gu, Juncheng Fang, and Faisal Nawab. 2025. PoneglyphDB: Efficient
Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verifica-
tion. In Proceedings of Make sure to enter the correct conference title from
your rights confirmation emai (SIGMOD’25). ACM, New York, NY, USA,
14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
As databases serve as the backbone of diverse applications, the re-
sponsibility entrusted to them extends beyond data storage—it encom-
passes the safeguarding of sensitive information. This is an important
consideration, especially for databases that store personal data. Also,
in applications with sensitive information such as census data or unem-
ployment statistics, it is important for users to trust that the database
owner is using the correct database (i.e., one that is consistent with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the author(s)
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’25, June 22-27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

the claimed database) and that the provided answers accurately reflect
the intended computations.

We tackle the problem of providing a database solution to ensure
two characteristics: (1) Confidentiality: this property means that
raw data is only maintained at the host (i.e., service provider) and
is not shared or made public to any other node. Other nodes only
receive responses to specific queries that they send to the host node
and that the host node agrees to process. (2) Provability: ensuring
the correctness of processing. This means that the results computed
by the host node and sent back to users reflect the correct processing
of the query on the private database. This requires that the host node
provides a proof of the correctness of the query response to the user.

As an example, consider the healthcare sector, where medical
research institutions collect patient data for collaborative studies.
Institution X may wish to share insights about the data with data con-
sumers Y, Z, and W without disclosing the raw data. Data consumers
send queries to X, where queries are processed and their responses
sent back to the consumer. X has control on what queries to answer
and therefore can control the confidentiality of data [12]. However,
because data consumers do not have access to the raw database, they
cannot verify the correctness of processing.

In this paper, we build on cryptographic solutions, namely
zero-knowledge proofs (ZKP) [17, 21], to address the challenges
of ensuring both confidentiality and provability in database query
processing [14, 42, 43]. ZKP constitutes a powerful cryptographic
tool that enables one party, the prover, to convince another party,
the verifier, of the correctness of a statement without revealing any
specific information about the statement itself. The protocols used
in ZKP systems can be made interactive and non-interactive ZKP.
Interactive ZKP utlize cryptographic protocols wherein two entities,
namely a prover and a verifier, dynamically exchange messages to
establish the validity of a statement without revealing any sensitive
information. Previous research has introduced interactive ZKP for
verifying SQL queries [30, 47, 49]. The rationale behind using
interactive ZKP for SQL query verification (like ZKSQL [30]) is that
they enable the prover to engage with the verifier in multiple rounds,
incrementally constructing and verifying parts of the proof. This
step-by-step interaction often results in smaller circuit sizes, as the
prover can break down the computation into manageable parts rather
than generating a single large, complex proof upfront. However, the
interactive nature introduces challenges related to synchronization
and availability between the prover and verifier. Specifically, interac-
tive ZKP are accompanied by two main drawbacks that currently limit
their widespread adoption in practical applications: (1) They necessi-
tate interaction between the prover and verifier throughout the proof
protocol, imposing requirements for availability and synchronization
between the involved parties. This challenge exacerbates failures and
timeouts. (2) They lack transferability, as only the specific verifier(s)

https://orcid.org/
https://orcid.org/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

Zero-knowledge Non-interactive Arbitrary SQL queries
IntegriDB [49] % % %

vSQL [47] % % !

vSQL+ [48] ! % N/A
ZKSQL [30] ! % !

PoneglyphDB ! ! !

Table 1: Comparing cryptography-based methods for verifiable
SQL queries.

engaged in the original protocol possess the capability to verify
the proof. This excludes the possibility of reusing (and caching)
previously computed responses and proofs for multiple verifiers.

On the other hand, non-interactive ZKP is a cryptographic protocol
class designed to establish the validity of a statement without the
necessity for a dynamic exchange of messages between the prover
and verifier. Unlike interactive ZKP, non-interactive ZKP empowers
a prover to generate a single, self-contained proof that can be subse-
quently verified by any party possessing the necessary verification
key. This characteristic eliminates the requirement for real-time in-
teraction during the proof protocol, providing greater flexibility and
efficiency in scenarios where asynchronous verification or limited
interactivity is desired. Non-interactive ZKP, however, can experience
significant overheads if the underlying cryptographic circuits are not
carefully optimized.

In this paper, we propose a database system named PoneglyphDB,
which incorporates non-interactive ZKP and the recursive proof com-
position technique. PoneglyphDB achieves both confidentiality and
provability through non-interactive ZKP. PoneglyphDB differs from
traditional databases by incorporating ZKP circuits, which are sets
of equality constraints over arithmetic expressions designed to mimic
the steps of query processing. These circuits enable ZKP frameworks
to generate proofs of correctness for computations. In PoneglyphDB,
we design circuits to represent basic query operations such as range
checks, sorting, group-by, and joins, which are combined to handle
more complex queries. Circuit design directly impacts proof gen-
eration performance. We optimize PoneglyphDB’s circuits using
the PLONKish framework [46], considering factors such as circuit
size, polynomial degree, and batching construction. Additionally,
PoneglyphDB leverages a recursive structure for composing proofs
of multiple statements, reducing the overall proof size and computa-
tional overhead. This is made possible by advancements in proving
systems that utilize recursive proof composition techniques [9, 28].

Table 1 compares PoneglyphDB and prior research on verifiable
database systems [30, 47, 49] in terms of three properties: (1) the as-
surance of zero-knowledge (i.e., confidentiality), (2) non-interactive
operability, and (3) applicability to arbitrary SQL queries. The pro-
tocols used in vSQL and vSQL+ are originally presented in an inter-
active manner, however they can be made non-interactive via the Fiat-
Shamir heuristic [16]. To the best of our knowledge, PoneglyphDB
is the first system that achieves all these desirable properties. Also,
in the evaluation section, we show that PoneglyphDB performance
outperforms the state-of-the-art ZKP method.

This paper is structured as follows: Section 2 presents background
material. Section 3 proposes the general design of PoneglyphDB
followed by the detailed design in Section 4. Section 5 presents our ex-
perimental evaluations. Section 6 presents related work and Section 7
concludes the paper.

2 Preliminaries
2.1 Zero-Knowledge Proofs
In the area of ZKP, a prover can convincingly demonstrate the truth of a
given statement to a verifier without divulging any additional informa-
tion. Specifically, ZKP empowers a prover P with a private witness𝑤
(a “private witness" refers to a piece of secret information such as a se-
cret input, e.g., database) to validate the truth of a public statement F
(with respect to𝑤) to a verifierV, while preserving the confidentiality
of the underlying information𝑤 . For instance, suppose a database con-
tains information about employees, and the data owner wants to prove
to the verifier that the average salary of the employees is a certain num-
ber without disclosing individual salary details. In this scenario, the
private witness𝑤 is the information about individual salaries, and the
public statement F is the average salary computed by the SQL query.

In scenarios with multiple verifiers, such as healthcare settings
where various institutions need to verify query results, interactive
protocols can become impractical due to the need for multiple rounds
of communication with each verifier. Non-interactive ZKP addresses
this issue by allowing the prover to generate a single proof that can
be verified by all parties without further interaction. For public-coin
interactive protocols [21], the Fiat-Shamir heuristic [16] effectively
converts them into non-interactive ones (e.g., vSQL), maintaining
efficiency and minimizing computational overhead while supporting
asynchronous verification.

2.2 Arithmetization
The use of arithmetic circuits is the most common paradigm for
expressing computations within ZKP systems. We introduce the
PLONKish arithmetization [46] that we use in PoneglyphDB. We
emphasize that the PLONKish circuits used in PoneglyphDB serve
primarily as a vehicle to demonstrate the potential of non-interactive
ZK proofs within database management systems (DBMSs), rather
than representing a state-of-the-art protocol.

PLONKish circuits are defined in terms of a rectangular matrix of
values. We refer to rows, columns, and cells of this matrix with the con-
ventional meanings. In the following, we introduce the key definitions
of PLONKish circuits that are relevant to our circuit optimization.

1. Fixed columns. Fixed columns are fixed by the circuit. The values
in the fixed columns are usually constants.

2. Advice columns. Advice columns correspond to witness values.
These are private inputs and intermediate values generated during
the circuit computation.

3. Instance columns. Instance columns are used for any elements
shared between the prover and verifier. In most cases, they are used
for public inputs and outputs.

4. Equality constraints. Equality constraints specify that two given
cells must have equal values.

5. Polynomial constraints. For each row in the matrix, the multivari-
ate polynomials over the field F must be evaluated to zero.

Example 2.1. Figure 1 illustrates the PLONKish circuit for calcu-
lating the function 𝑓 (𝑥,𝑦,𝑧) =3∗ (𝑥+𝑦) ∗𝑧. The circuit utilizes three
advice columns—advice1, advice2, and advice3—to store the private
inputs and intermediate values during computation.

In row 0, the values for 𝑥 and𝑦 are put into the cells in advice1 and
advice2, respectively (i.e. 𝑥 =𝑎1 and𝑦=𝑏1). A polynomial constraint

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

advice1

a1

polynomial constraints:

row 0:

Advice
columns

Fixed
column

Instance
column

row 1:

row 2:

row 0: a1+b1-c1 = 0

row 1: a2*b2-c2 = 0

row 2: a3*b3-c3 = 0

 denotes copy constraints. The example includes four copy constraints: b2 = c1, b3 = c2,
a3 = 3, o1 = c3. For each row in the matrix, the multivariate polynomials are evaluated to 0.

a2

a3

b1

advice2 advice3 instanceconstant

b2

c1

c2

c3

o1

b3

3

Figure 1: PLONKish circuits illustration for calculating the
function 𝑓 (𝑥,𝑦,𝑧)=3∗(𝑥+𝑦)∗𝑧.

is introduced to ensure that 𝑐1=𝑎1+𝑏1, calculating 𝑥+𝑦. Next in row
1, the value of the input 𝑧 (i.e. 𝑧 =𝑎2) is put into the cell in advice1.
Since 𝑎1+𝑏1 was computed as 𝑐1, its value is propagated to 𝑏2 and an
equality constraint sets 𝑏2=𝑐1. A multiplier gate (with polynomial
constraints) then calculates 𝑐2 = 𝑎2∗𝑏2, evaluating 𝑎2∗𝑏2−𝑐2 = 0.
Finally in row 2, the constant 3 is brought into advice1 at the cell of
𝑎3 and fixed by the copy (or equality) constraint 𝑎3=3. The previous
intermediate result (𝑎1+𝑏1)∗𝑎2=𝑐2 is copied into 𝑏3, with an equal-
ity constraint𝑏3=𝑐2. The final output cell 𝑐3 calculates 𝑎3∗𝑏3, which
evaluates to 3∗(𝑎1+𝑏1)∗𝑎2.

This result is copied into the public instance column at𝑜1, allowing
the verifier to read off the final output. Through a series of advice
columns, equality constraints, and polynomial operations, the circuit
computes the desired function in a modular fashion while keeping
intermediate values private. The verifier only sees the final outputs
revealed in the instance column.

To facilitate the modularity of PLONKish circuits, the designs
of basic functions are represented as gates. A gate is a collection of
columns and constraints that together implement a basic operation,
such as division and multiplication. In our case, we will define gates
for basic operations for query processing such as range checks and
sorting. Gates can then be combined to implement more complex
functions (or more complex gates).

3 System Overview
3.1 System Model
In PoneglyphDB, the prover P hosts a copy of a private database DB.
The prover receives queries from one or more verifiers, collectively
denoted V. The prover does not provide raw access to the data in the
database. However, it answers queries sent by the verifiers.

3.2 Workflow Overview
PoneglyphDB operates in five key phases, as illustrated in Figure 2:

(1) Sending SQL Queries: The client, who will eventually assume
the role of a verifier, sends SQL queries for execution against a private
database, directly to the prover. The prover, holding exclusive access
to this private database, is tasked with executing the queries.

(2) Circuit Construction: Upon receipt of the query request, the
prover is then responsible for constructing the SQL queries and data-
base commitment into arithmetic circuits. These circuits, delineated
by gates and polynomial constraints, performs the computations that
need to be proven. The SQL circuit encodes the desired SQL logic
to be evaluated. This circuit allows for the computation of different
inputs provided by the verifiers during the verification phase.

Database
Public

parameters

Proving key

Verification key

Circuits for
SQL queries

Client/Verifier

Proof

Database
commitment

2

3

5

1

Prover

Private information Public information

4
4

5
sending requests

verifying proofs

constructing circuits
generating

 proofs

generating
 keys

Figure 2: PoneglyphDB Workflow.

A database commitment is a cryptographic representation of a
database state, enabling proof of properties about the data without
revealing the data itself. This allows the prover to include evidence in
the proof that the query was indeed processed on DB. We employ the
Inner Product Argument (IPA) protocol [8], operating over a 254-bit
prime field, to generate this commitment. We choose the IPA protocol
for the following reasons: (1) the proving time is typically linear with
respect to the circuit size or the degree of the committed polynomial,
(2) the proof size and verification time are logarithmic in the circuit
size, due to the recursive structure of the inner product proof [9], and
(3) it is compatible with PLONKish-based circuit designs.

By leveraging IPA, we can encode both the database commitment
and the desired SQL logic within a unified framework [8, 10]. The
public parameters are a shared foundation for both provers and ver-
ifiers in proof creation and validation. This process utilizes publicly
verifiable randomness and avoids the need for a trusted setup [13].
Initial proof creation uses only public information, forming the basis
for subsequent proofs [9].

(3) Key Generation: Leveraging the public parameters and the
circuit description, PoneglyphDB generates a proving key. This key
is used to generate proofs corresponding to the circuit. Concurrently,
a verification key is also produced, grounded in the same public
parameters and circuit description. This verification key empowers
verifiers to authenticate the proofs associated with this circuit.

(4) Proof Generation: The prover uses the proving key to generate
a ZKP validating the correct computation of the SQL query over the
private database. Leveraging the previously established database com-
mitment, the prover creates a verifiable link between the committed
database, query execution, and result. This process incorporates com-
mitments to relevant database rows and intermediate computation
steps, forming a chain of verifiable commitments from the initial
database state to the final query output.

(5) Proof Verification: Finally, the verifier employs the public
verification key to efficiently validate the ZKP received from the
prover. The verification algorithm essentially interpolates the wiring
polynomials and checks that all constraints are satisfied.

PoneglyphDB Positioning in the Workflow. In PoneglyphDB,
we utilize existing work from the cryptography community to per-
form the steps of key and proof generation and verification. The main
contribution of our work is in the design of SQL circuits that allow for
efficient proving and verification given the utilized framework [44].

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

3.3 Application Framework Disuccsion
Trust Model. In the PoneglyphDB framework, the core parties in-
volved are the database owner, acting as the prover, and the clients,
acting as the verifiers. The prover and verifiers do not trust each other
as we detail below. There is an additional entity, the auditor, that
both the prover and verifier trust (there can be multiple auditors). The
following are trust concerns between the parties:

1. The prover may use a fake database: The client does not trust
the prover to be using the correct database to run the query. For
example, a server responsible for running SQL queries might use a
tampered or fake database to process a query and provide incorrect
results to the verifier.

2. The prover may process the query incorrectly: Even if the cor-
rect database is used, the client cannot trust the accuracy of the
results returned by the prover. The server could mistakenly or in-
tentionally alter or fabricate the query results.

3. The verifier may attempt to leak data: On the other hand, the
prover fears that the client might attempt to extract or infer addi-
tional information about the underlying database beyond what is
allowed by the query. The client could craft a series of queries to
uncover sensitive patterns, private data, or proprietary information,
breaching the prover’s confidentiality.
We now map this trust model to a real-world scenario. In general,

this trust model applies to cases when a database owner has sensitive
data and wants to enable other entities (clients) to query the database
without revealing data beyond what the database owner allows. In
the healthcare scenario, a hospital H wants to provide query access
to its database of patient data. It does not want to reveal all data, but
would allow answering specific types of queries. The clients can be
healthcare providers or research institutions that want to utilize H’s
database for their research. In this scenario, an auditor can be a gov-
ernment or regulatory entity that both H and clients trust. Next, we
map the trust model assumptions onto this example:

1. The clients do not trust the hospital H to be using a correct database
of patient’s data: The hospital H does not reveal the raw database
to the clients, and therefore clients cannot attest to the authenticity
of the database used to answer queries.

2. The clients do not trust the hospital H to process queries on the
database correctly: The hospital H may process the queries on the
database incorrectly (e.g., by using approximation techniques to
save costs, or by completely fabricating results).

3. The clients may attempt to leak data from query responses: The
clients may want to know more information about the database of
H than what is provided in the answer to the query.
To address these trust issues, PoneglyphDB introduces the follow-

ing measures:
(1) Cryptographic Commitment to the Database: PoneglyphDB

requires the prover to make an irrevocable cryptographic commitment
to the database. This ensures that the prover cannot substitute the
real database with a bogus one while still producing valid query
results. The commitment is made public and shared in an irrevocable
and immutable manner, e.g., by utilizing a decentralized blockchain
such as Ethereum. This ensures that the prover will use the same
database that corresponds to the database commitment as clients have
access to an irrevocable, immutable database commitment that they
can compare with the commitment used in the received proof. The

database commitment can also be audited by a third-party auditor
(e.g., a regulatory or government entity trusted by both the prover and
verifiers). The auditor in this case reads the raw database from the
database owner, verifies its authenticity, and validates that the database
commitment of the authentic database corresponds to the commitment
that is shared in the blockchain and accessible by the verifiers.

To prove the correctness of database updates and generate new
commitments, a naive method would be to recompute the commitment
for the entire database after each update. However, this approach is in-
efficient for large databases. A more advanced method might involve
using a Merkle tree structure [32], where only the affected subtree
is updated and recomputed, enabling efficient localized proof gen-
eration. Another potential method involves leveraging batch update
techniques, where multiple updates are aggregated into a single proof.

(2) Ensuring Query Result Correctness: PoneglyphDB employs
a constraint system that encodes SQL queries as circuits, ensuring
that the verifier can confirm the query results are derived from a pre-
defined and correct computation process. This process ensures the
prover cannot return fabricated results.

(3) Preserving Data Privacy: To ensure the owner’s database
privacy, PoneglyphDB employs ZKP. These proofs guarantee that
the client only receives the query result without extracting or in-
ferring any additional information about the underlying database.
The zero-knowledge property protects the database from unwanted
data leakage beyond what is revealed from the query response. This
zero-knowledge property can be combined with other techniques that
prevent other types of leakage of private data. For this reason, it is
important to distinguish between the types of leakage that are pre-
vented or allowed by the zero-knowledge property and complement it
with other techniques. A ZKP does not reveal information beyond the
query response, but it does reveal what is part of the query response
(and anything that can be implied by the query response). Therefore,
if there is data that a user should not have access to but is part of the
query response, then it is leaked to the client. To prevent this type
of leakage, ZKP can be combined with techniques such as access
control, data masking, query filtering, and policy management to
prevent processing queries on data that the user would not have access
to [1]. These techniques, typically applied as pre-processing steps,
allow the prover to decide whether a query should be processed. For
example, if the client’s query asks to get raw data that should not be
revealed, then the prover would not process the query. Query filtering,
in particular, helps prevent leakage by modifying the query plan to
exclude sensitive information before execution, ensuring that only
authorized data is included in the response. Another type of leakage
is to infer information about the database that were not intended to
be revealed directly in the query response. This type of leakage can
be prevented by incorporating differential privacy techniques as we
discuss at the end of Section 3.4.

With these techniques, and reflecting back to the mapping to the
real-world scenario above, we observe the following: (1) Poneg-
lyphDB ensures that the hospital H uses an authentic database to pro-
cess queries. This is by utilizing a trusted third-party auditor that veri-
fies that the publicly shared irrevocable and immutable database com-
mitment corresponds to an authentic database. If a prover attempts to
utilize a different database, then the client is able to discover this as the
client would match the publicly shared database commitment that is
authenticated by an auditor with the database commitment that is used

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

to process the query and received as part of the response. (2) Poneg-
lyphDB ensures that hospital H processes the query correctly (accord-
ing to the logic of the SQL query) by the ZKP constructions. (3) Poneg-
lyphDB ensures that no information leakage occurs beyond what is
revealed by the responses of hospital H. Hospital H can integrate
further techniques—such as differential privacy—to ensure that other
types of data leakage would not occur (as we describe in Section 3.4).

3.4 Security Model
PoneglyphDB leverages the Halo2 proving system [44], which incor-
porates well-established cryptographic properties such as complete-
ness, soundness, knowledge soundness, and zero-knowledge.

• Completeness. If the prover can generate the PLONKish circuit
(including the output) of a query, it can always convince the verifier
that the PLONKish circuit of the query is true.

• Soundness. For any false PLONKish circuit (including any wrong
witness, inputs and output), the probability of a dishonest prover
successfully convincing an honest verifier is negligible.

• Knowledge Soundness. When the verifier is convinced the PLONK-
ish circuit is correct, the prover actually possesses a valid witness.

• Zero Knowledge. The verifier learns only the information that
can be inferred from the structure of the PLONKish circuit and
the output of the query. No additional knowledge about the private
witnesses or the database is revealed.

Figure 3 illustrates the detailed components involved in generating
ZKP within PoneglyphDB. The system comprises two main parts:
the PLONKish circuit and the Halo2 proving system. The PLONKish
circuit serves as the input to the Halo2 proving system, which then
generates ZKP for the circuit. Our primary contribution lies in the
design of the PLONKish circuits, which are tailored to optimize the
performance and efficiency of the ZKP generation process.

The PLONKish circuit represents the computation of a SQL query.
This circuit is a mathematical representation of the logical operations
and constraints involved in the SQL query execution. The prover,
who possesses the private database, assigns values to all circuit vari-
ables based on the actual data from the database. This step involves
mapping the data inputs to the corresponding variables in the circuit,
ensuring that the computation is correctly set up for proof generation.
The prover must use the database agreed upon with the verifier by
utilizing the previously established database commitment.

The Polynomial representation component, provided by the Halo2
proving system, translates the circuit into a polynomial form. This
component encodes the computation and its constraints as polynomial
equations, making them suitable for ZKP.

The Polynomial commitment component, also provided by the
Halo2 proving system, allows the prover to commit to the polynomial
evaluations without revealing the actual polynomials. This ensures
that the prover cannot alter the polynomials after the commitment,
maintaining the integrity of the proof.

The Halo2 proving system takes the committed polynomials and
generates opening proofs. These proofs are designed to show that the
committed polynomials satisfy the polynomial constraints derived
from the PLONKish circuit.

It is important to note that the PLONKish circuits implemented
in PoneglyphDB are primarily intended to illustrate the feasibility of

Private
database

Polynomial
constraints

Proof

PLONKish circuit of PoneglyphDB
Prover

Polynomial
commitment

Assign values to all
circuit variables

Polynomial
representation

Compute
polynomial

evaluations

Halo2 proving system

Create opening proofs
for the committed

polynomials

Verifier

Verificaiton
results

Input to the Halo2 proving system

Database
commitment

Figure 3: Detailed components for generating ZK proofs.

using non-interactive ZK proofs within DBMSs, rather than to claim
they represent the latest advancements in ZK protocol design.

Guarantees. The correctness and security of PoneglyphDB de-
pend on PLONKish circuits and the Halo2 proving system. we demon-
strate the correctness of these circuits for SQL queries in Section 4.

Regarding the security of the Halo2 proving system used in Poneg-
lyphDB , the prover and verifier engage in a non-interactive ZKP
protocol utilizing Halo2’s polynomial commitment scheme and recur-
sive proof composition. The detailed security analysis of this protocol
has been rigorously established in [9, 45]. We present a high-level
summary of the correctness of the system below. To analyze the crypto-
graphic protocols employed in Halo2, we utilize the Algebraic Group
Model (AGM) [18]. The AGM is used to analyze protocols that rely on
discrete logarithm assumptions in prime-order groups, a fundamental
aspect of Halo2’s design. The AGM evaluates the security of crypto-
graphic protocols by requiring that adversaries must explicitly com-
pute group elements from previously observed elements, emphasizing
discrete logarithm-type assumptions in prime-order groups. Poneg-
lyphDB guarantees completeness, soundness, knowledge soundness,
and zero-knowledge properties under the AGM, assuming that all
parties, including potential adversaries, are computationally bounded
to probabilistic polynomial-time (PPT) algorithms. PoneglyphDB en-
sures that for any PPT adversary, there exists a PPT simulator such
that, for any environment with arbitrary auxiliary input, the output
distribution of the environment in a real-world execution (where a
prover interacts with a verifier) is computationally indistinguishable
from the output distribution in an ideal-world execution (where a
simulator interacts with the verifier).

Oblivious circuits. The proving logic of the circuits in Poneg-
lyphDB is designed to be oblivious. This means that the execution of
the proving algorithm does not depend on the specific values of the
private inputs (the witness). Instead, the prover performs the same
operations regardless of the actual witness values, which helps ensure
that no information about the private inputs is leaked through the
proof generation process or the resulting proof itself. For example,
when implementing a sorting algorithm, the circuit would compare
and swap elements in a fixed pattern regardless of their actual values,
ensuring the same operations are performed for any input. Similarly,
for conditional statements, both branches of the condition are typi-
cally evaluated, and their results are combined using a selector value,
rather than following only one branch based on the private condi-
tion. To protect the privacy of table cardinalities and intermediate
result sizes in join operations, we adopt the method introduced in
ZKSQL [30]. This approach involves introducing dummy tuples into
our query evaluation process, effectively obscuring true data sizes
while maintaining consistent row counts throughout query execution.

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

3.5 Data Privacy Issues and Limitations
PoneglyphDB sends the query results to the clients. Since the proof
inherently includes the result of the query, a client could, for example,
issue a query like "SELECT * FROM T" to attempt to retrieve all
values from T, which threatens data privacy. Beyond the direct data
exposure of returned results, sensitive data can also be exposed indi-
rectly. Specifically, when data points or records in the database are
correlated, query results may still leak sensitive information about
records that are not part of the response. For instance, correlation
among records—such as similar attributes shared across groups or sta-
tistical dependencies—can allow a client to infer additional, sensitive
details beyond the returned query results. In this way, even without
direct access to records that are not included in query results, clients
can potentially exploit patterns in the query response to gain insights
into the broader dataset indirectly. This poses a data privacy risk that
needs to be handled carefully.

To address this issue, differential privacy techniques [15, 26] could
be employed to ensure that individual data points are not revealed
either directly or indirectly. In this work, we do not incorporate
differential privacy and leave it as an avenue of future work. We note,
however, that methods of incorporating differential privacy to ZKP
systems such as PoneglyphDB would lead to additional overhead
in the circuit design.

4 Custom Gates
In this section, we present customized gates to represent SQL queries
arithmetization in circuits. Our goal is to introduce efficient designs
by creating gates that have low-degree polynomials and a smaller
number of circuit constraints. We design with low-degree polynomi-
als because ZKP relies on cryptographic primitives where evaluating
higher-degree polynomials is computationally expensive.

4.1 Range Check
We first introduce a range check gate as it is involved in many SQL
operations like “filter”, “sort”, “group by” and “join”.

Consider the range check statement𝑥 ≤ 𝑡 , where𝑥 is a private value
and 𝑡 is the public query input. A naive encoding compares 𝑥 against
each possible value using the polynomial equation:

∏𝑡
𝑖=0 (𝑥−𝑖) = 0.

The degree of this polynomial grows linearly with 𝑡 , making proof
generation and verification computationally infeasible for large 𝑡 . In
this work, we leverage a lookup table [19] circuit structure to design
the range check gate. The intuition behind using lookup tables lies in
the idea of precomputing and storing results for a range of possible in-
puts. Our work builds upon the widely used Plookup framework [19],
which is well-established in the ZKP domain. While there are al-
ternatives, such as Jolt [36], we leave exploration of these methods
for future work. Instead of reinventing cryptographic primitives, we
focus on solving concrete implementation challenges to enhance ef-
ficiency of SQL operations within the PLONK framework. While
previous works [30, 47] implement operations like filter, sort, and
join using boolean or logic gate frameworks, our approach utilizes
arithmetic-based PLONKish circuits. This fundamental difference in-
troduces significant challenges, as arithmetic circuits require different
optimization strategies compared to boolean circuits. Adapting SQL
operators in this context necessitates a rethinking of their expression
and optimization to achieve maximum efficiency.

Definition. The input to a range check gate, which checks if ele-
ments are between𝑦1 and𝑦𝑚 , consists of a column𝐶in containing 𝑛
elements {𝑥1,𝑥2,...,𝑥𝑛} to be range-checked, and a column (lookup
table)𝑇 containing𝑚 sorted values {𝑦1,𝑦2, ...,𝑦𝑚} representing the
valid range, where 𝑦1 <𝑦2 < ···<𝑦𝑚 . The output of the range check
gate is a column𝐶out containing𝑛 elements {𝑧1,𝑧2,...,𝑧𝑛}, where each
𝑧𝑖 indicates whether 𝑥𝑖 is within the range defined by the lookup table
𝑇 . Specifically, 𝑧𝑖 =1 if 𝑥𝑖 ∈ {𝑦1,𝑦2,...,𝑦𝑚}, and 𝑧𝑖 =0 otherwise.

Design A: A single range check. We start with a simple case where
we only want to prove that a single value 𝑥 is in a specific range [0,𝑡],
hence proving that 0≤𝑥 ≤ 𝑡 . In the first step of constructing the circuit,
we create a private array 𝑃 (stored in an advice column) with the same
length of set𝑄 where the first element in 𝑃 is 𝑥 and the other elements
are any values copied from𝑄 (these values can be duplicates). Then,
the prover supplies a permutation of 𝑃 , denoted by 𝑃 ′ where 𝑃 ′ is
private and stored in an advice column in the circuit. The values in
𝑃 ′ are sorted so that duplicate values are row-adjacent to each other.

In the second step, we establish a fixed column to store the set𝑄 ,
arranging the values in ascending order. This organization ensures
that both the prover and the verifier are aware of the values and their
corresponding indices within the table. Such knowledge is crucial for
determining the size of the lookup table needed.

The prover supplies a permutation of𝑄 , denoted by𝑄 ′, where𝑄 ′

is private and stored in an advice column in the PLONKish circuit.
The purpose of the permutation𝑄 ′ is to hide the position of values in
𝑄 as the verifier knows all the information about𝑄 . Then, the circuit
can compare values in𝑄 ′ and 𝑃 ′ to check whether 𝑥 (in 𝑃 ′) is equal
to some value in𝑄 ′, without revealing which value is that in𝑄 ′.

Now, we show how we can check whether the value 𝑥 in 𝑃 ′ is equal
to a value in𝑄 ′. The values in𝑄 ′ are arranged in a specific order such
that either 𝑃 ′

𝑖
=𝑄 ′

𝑖
or that 𝑃 ′

𝑖
=𝑃 ′

𝑖−1 where 𝑃 ′
𝑖

and𝑄 ′
𝑖

represent the 𝑖-th
elements of 𝑃 ′ and𝑄 ′ respectively. Specifically, we enforce that the
first values of 𝑃 and𝑄 are equal, i.e, 𝑃 ′

𝑖
=𝑄 ′

𝑖
with 𝑖 =0. If 𝑃 ′

𝑖
≠𝑄 ′

𝑖
for

𝑖 > 0, we enforce that 𝑃 ′
𝑖
=𝑃 ′

𝑖−1 meaning that 𝑃 ′
𝑖

must be a duplicate
of 𝑃 ′

𝑖−1 in this case. Therefore, these constraints guarantee that every
value in 𝑃 ′

𝑖
is equal to some value in 𝑄 ′. Formally, we enforce that

either 𝑃 ′
𝑖
=𝑄 ′

𝑖
or that 𝑃 ′

𝑖
=𝑃 ′

𝑖−1, using the rule:

0=

{
(𝑃 ′

𝑖
−𝑄 ′

𝑖
) · (𝑃 ′

𝑖
−𝑃 ′

𝑖−1) if 1≤ 𝑖 ≤ 𝑙𝑒𝑛(𝑄 ′)−1,
𝑃 ′
𝑖
−𝑄 ′

𝑖
if 𝑥 =0.

(1)

With the above polynomial constraints, the verifier knows that all the
values of 𝑃 ′ are in𝑄 ′ without knowing the position information of
the values in 𝑃 ′ and𝑄 ′ (therefore it does not know the exact values at
each position in 𝑃 ′, preserving the privacy of the 𝑥 value).

Since 𝑃 ′ and𝑄 ′ are permutations of 𝑃 and𝑄 , the polynomial con-
straints above ensure that all the values of 𝑃 (and 𝑃 ′) are in 𝑄 . To
ensure this property, we develop polynomial constraints to ensure that
both 𝑃 ′ is a permutation of 𝑃 and𝑄 ′ is a permutation of𝑄:

𝑙𝑒𝑛 (𝑄)−1∏
𝑖=0

(𝑃𝑖+𝛼) (𝑄𝑖+𝛽)=
𝑙𝑒𝑛 (𝑄)−1∏

𝑖=0
(𝑃 ′𝑖 +𝛼) (𝑄

′
𝑖 +𝛽) (2)

where 𝑃𝑖 , 𝑄𝑖 , 𝑃 ′𝑖 and 𝑄 ′
𝑖

represent the 𝑖−th element in 𝑃 , 𝑄 , 𝑃 ′, and
𝑄 ′ respectively, and 𝛼 and 𝛽 are randomly chosen parameters. The
random values 𝛼 and 𝛽 conceal the contents of the columns, ensuring
confidentiality during verification and preventing zero products from

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

P

x1=1

x1=1

x2=5

row 0:

row 1:

row 2:

row 3:

x2=5

0

0

0

0

00

P' Q' Q

1

3

2

2

3

1

Advice
column

Advice
column

Advice
column

Fixed
column

Figure 4: Range check with lookup tables illustration.
causing collisions due to poor randomness. To make the circuit for-
mulation efficient, we express it as a recursive function to ensure that
each equation maintains a low polynomial degree:

𝑍𝑖+1=𝑍𝑖 ·
(𝑃𝑖+𝛼) (𝑄𝑖+𝛽)
(𝑃 ′

𝑖
+𝛼) (𝑄 ′

𝑖
+𝛽)

𝑍len(𝑄) =𝑍0=1
(3)

Example 4.1. Figure 4 illustrates our proposed lookup table circuit
design for proving a range check statement without revealing the spe-
cific values of 𝑥1 and 𝑥2. The prover uses a fixed column𝑄 accessible
to verifiers, containing values in the range [0,4). An advice column 𝑃
includes the actual values of 𝑥1 and 𝑥2 with the remaining cells filled
arbitrarily from𝑄 . The prover then generates advice columns 𝑃 ′ and
𝑄 ′ as permutations of 𝑃 and𝑄 , respectively, with 𝑃 ′ sorted in ascend-
ing order and duplicates adjacent, ensuring𝑄 ′ starts with the same
value as𝑃 ′. The prover checks that each𝑃 ′

𝑖
is either equal to𝑄 ′

𝑖
or𝑃 ′

𝑖−1.
This polynomial constraint ensures that values are within the range.

Design B: Batching range check. The lookup table technique
facilitates verifying whether all elements of an array 𝑃 belong to the
set 𝑄 = {𝑖 | 0 ≤ 𝑖 ≤ 𝑡,𝑖 ∈ Z}, effectively checking if they fall within
the range [0,𝑡]. By organizing the elements of 𝑃 into a single advice
column and aligning the set 𝑄 within a fixed column, the lookup
table approach previously discussed can be applied. For instance, the
circuit depicted in Figure 4 can demonstrate whether the elements
in the array [0,2,1,3] (column 𝑄 ′) are contained within the range
[0,4) (column 𝑄). The complexity of verifying the inclusion of the
arrays [0] and [0,1,2,3] within the range [0,4) remains consistent, as
it necessitates the application of formulas 1 and 3 for each row.

Design C: Optimizing range checks with bitwise decomposition
and lookup tables. To mitigate the scalability concerns associated
with range checks, especially when the size of the set 𝑄 becomes
significantly large (e.g., 264), we propose an optimization technique
that leverages bitwise decomposition in conjunction with lookup
tables. This method entails representing integers in a fixed bit-length
format, such as 64 bits, and subsequently verifying the integrity of
this bitwise representation in relation to the original integer value.

Given an integer 𝑁 and its representation as a sequence of bits
𝑏0,𝑏1,...,𝑏𝑘−1, where 𝑏0 is the least significant bit and 𝑏𝑘−1 the most
significant, the relationship between 𝑁 and its bits is described by
𝑁 =

∑𝑘−1
𝑖=0 𝑏𝑖 ·2𝑖 . We partition the bitwise representation of integer 𝑁

into smaller segments of 8 bits, referred to as u8 cell. This approach is
predicated on the standard binary representation of integers, wherein
the integer is segmented into 8-bit blocks. For instance, a 64-bit in-
teger is divided into 8 u8 cells, each encapsulating an 8-bit slice of
the integer. Constraints are imposed to ensure this decomposition is
accurately executed with the constraints 𝑁 =

∑7
𝑖=0𝑐𝑖 ·2

8𝑖 for a 64-bit
integer 𝑁 , where 𝑐𝑖 represents the 8-bit segment of 𝑁 at position 𝑖.

Each u8 cell 𝑐𝑖 should have values within the range 0 to 255 (inclu-
sive), corresponding to 28−1. To validate each u8 cell, we utilize a
fixed-sized lookup table of size 256, which contains integers from 0
to 255. This table allows efficient range checking for each segment
of the integer. The advantage of using this lookup table is that it is
fixed-sized (256 entries) and can be reused multiple times for each
u8 cell check. This ensures that each u8 cell 𝑐𝑖 can quickly verify if
its value falls within the allowed range of 0 to 28−1. By reusing the
lookup table across all 8 u8 cells of 𝑁 , we streamline the validation
process and ensure consistent range checks.

Design D: Conditional statements proving. The previous range
check method faces limitations when a value falls outside the lookup
range, making proof construction difficult. To this end, we intro-
duce an augmented method that seamlessly integrates with lookup
tables to facilitate range checks while gracefully handling conditional
scenarios. When dealing with data filtering, an upper-bound value,
denoted as 𝑢, typically exists. Consequently, for 𝑥 ≥ 𝑡 , this also im-
plies𝑢 >𝑥 ≥ 𝑡 . Therefore, proving𝑢 >𝑥 ≥ 𝑡 is equivalent to proving
0≤𝑥−𝑡 ≤𝑢. To establish 𝑥 < 𝑡 , it suffices to demonstrate that 𝑥−𝑡 <0.
By adding𝑢 to both sides of the inequality, we obtain 0≤𝑥−𝑡+𝑢 <𝑢.
Introducing a binary variable, denoted as 𝑐ℎ𝑒𝑐𝑘 , to determine whether
𝑥 < 𝑡 , we ultimately prove the following statement:

0≤ (𝑥−𝑡)+check·𝑢 <u (4)

To accomplish this, the prover configures several supporting columns
in the PLONKish circuits. Initially, an advice column is created to
output 1 if 𝑥 < 𝑡 and 0 otherwise. Additionally, another advice column
is established to store the values of𝑥−𝑡 . Finally, the prover undertakes
the task of proving that check+(𝑥−𝑡) falls within the range of [0,𝑢)
with the assistance of the lookup tables introduced in Section 4.1.

Note that the values in the “check” columns are prover-determined,
with no explicit constraints imposed among 𝑥 , 𝑡 , and “check”. How-
ever, if the “check” values are inaccurately provided, the proof gen-
eration process encounters a failure. Moreover, the values in the “x”,
“t”, and “x-t” columns adhere to the constraints 𝑐𝑒𝑙𝑙𝑖 (𝑥)−𝑐𝑒𝑙𝑙𝑖 (𝑡)−
𝑐𝑒𝑙𝑙𝑖 (𝑥−𝑡)=0 for the initial four rows, where 𝑐𝑒𝑙𝑙𝑖 (𝑥) represents the
value in the “x” column at row 𝑖. These constraints guarantee that
the discrepancies between corresponding elements in the “x” and “t”
columns align with the values stored in the “x-t” column.

Correctness. We prove the correctness of the range check gate
from two aspects. (1) Property 1: Element Inclusion. All the values in
𝑃 ′ are in𝑄 ′. Assume that there exists one value𝑥 in 𝑃 ′ that is not in𝑄 ′.
We will show that this assumption leads to a contradiction. If 𝑥 is the
first value in 𝑃 ′, by Equation (1), 0=𝑃 ′0−𝑄

′
0, implying 𝑃 ′0=𝑄

′
0. Thus,

𝑥 =𝑃 ′0 contradicts 𝑥 ∉𝑄 ′. If 𝑥 is not the first, for 1≤ 𝑖 ≤ len(𝑄 ′)−1, 0=
(𝑃 ′

𝑖
−𝑄 ′

𝑖
) (𝑃 ′

𝑖
−𝑃 ′

𝑖−1) enforces 𝑃 ′
𝑖
=𝑄 ′

𝑖
or 𝑃 ′

𝑖
=𝑃 ′

𝑖−1. If 𝑃 ′
𝑖
=𝑄 ′

𝑖
, 𝑥 ∈𝑄 ′;

if 𝑃 ′
𝑖
=𝑃 ′

𝑖−1, 𝑥 duplicates 𝑃 ′
𝑖−1, tracing back to 𝑃 ′0=𝑄

′
0. Thus, 𝑥 must

be in𝑄 ′, contradicting 𝑥 ∉𝑄 ′. Hence, all 𝑃 ′ values are in𝑄 ′, proving
Equation (1)’s constraints ensure 𝑃 ′ ⊆𝑄 ′. (2) Property 2: Permutation
Integrity. Assume 𝑃 ′ and 𝑄 ′ are not permutations of 𝑃 and 𝑄 . This
implies that some 𝑃𝑖 or𝑄𝑖 does not match any corresponding 𝑃 ′

𝑖
or

𝑄 ′
𝑖
. Since the products involve symmetric polynomials, if {𝑃 ′

𝑖
+𝛼}∪

{𝑄 ′
𝑖
+ 𝛽} are not permutations of {𝑃𝑖 +𝛼} ∪ {𝑄𝑖 + 𝛽}, the two sides

of the equation cannot be equal due to the unique factorization of
polynomials. Therefore, by the Fundamental Theorem of Symmetric
Polynomials, 𝑃 ′ and𝑄 ′ must be permutations of 𝑃 and𝑄 .

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

With the two properties proven above, we can guarantee the cor-
rectness of proving 𝑥 < 𝑡 if 𝑥 is not larger than 𝑡 . The inequality in
Equation 4 holds if 𝑐ℎ𝑒𝑐𝑘 = 1 and 𝑥 < 𝑡 , or if 𝑐ℎ𝑒𝑐𝑘 = 0 and 𝑥 ≤ 𝑡 .
Therefore, setting the binary variable check correctly is sufficient to
determine whether 𝑥 < 𝑡 or not. By transforming 𝑥 to (𝑥−𝑡)+check·𝑢,
we can guarantee that the transformed 𝑥 is in the range of 0 to𝑢.

Complexity of a Range Check Gate. The ZK proof generation
cost depends on the number of constraints. We analyze the complexity
of a gate by specifying the required number of each type of constraint.
To validate that all elements of an array 𝑃 reside within a set𝑄 , the
number of constraints, as defined in Equations 1 and 3, corresponds to
the greater of |𝑃 | or |𝑄 |, denoted asmax(|𝑃 |,|𝑄 |). When employing the
bitwise decomposition method for an input set 𝑃 where |𝑃 |>256, the
lookup table is padded to match the size of the input by including dupli-
cates of values ranging from 0 to 255. For 64-bit integers decomposed
into 8 u8 cells, each cell undergoes a range check utilizing the lookup
table. The number of constraints, as described by Equations 1 and 3,
is equivalent to 8|𝑃 |. Additionally, the number of constraints required
to ensure the correct decomposition of integers into u8 cells, as well
as verifying that all segments of the integer fall within the specified
ranges, is |𝑃 |. Finally, to transform a value𝑥 with𝑥 ′= (𝑥−𝑡)+check·𝑢
(see Equation 4), an additional |𝑃 | constraints are needed.

4.2 Sort
We detail our approach to proving the correctness of sort operations.

Definition. The input of a sort gate consists of a table 𝐷 with𝑚
columns𝐶1,𝐶2,...,𝐶𝑚 , where𝐶𝑖 represents different attributes or val-
ues to be sorted. Each column𝐶𝑖 contains 𝑛 elements {𝑥𝑖1,𝑥𝑖2,...,𝑥𝑖𝑛}.
The output is a table 𝑆𝐷 with𝑚 columns 𝐶′

1,𝐶
′
2, ...,𝐶

′
𝑚 , where each

column 𝐶′
𝑖

contains the sorted elements {𝑦𝑖1,𝑦𝑖2, ...,𝑦𝑖𝑛}. Here, 𝑦𝑖 𝑗
represents the 𝑗-th element in column𝐶′

𝑖
of𝐷 , arranged in the desired

order (e.g. increasing or decreasing).
Design. The first step in proving sort operations entails generating

a witness, which includes the result of applying a specific sorting
algorithm to the input data. The prover has the flexibility to choose
any sorting algorithm, as long as the resulting order is correct. Let 𝐷
and 𝑅 represent the input data and the sorted result, respectively. Two
essential properties of 𝑅 must be guaranteed for a successful proof.
First, the data in𝑅 should match that in𝐷 except for the order, leading
to a permutation check between 𝑅 and 𝐷. The following constraints,
akin to Equations (3), ensure this:

𝑍𝑖+1=𝑍𝑖 ·
𝑅𝑖+𝛼
𝐷𝑖+𝛼

𝑍len(𝐷) =𝑍0=1
(5)

Here, 𝐷𝑖 and 𝑅𝑖 represent the 𝑖-th element in 𝐷 and 𝑅, and 𝛼 is a
randomly chosen parameter similar to ones in Equation 2.

In sorting mechanisms where multiple attributes are considered,
a unified approach is adopted to encapsulate these attributes into a
singular composite entity. This is achieved by allocating a consistent
bit-length representation for each attribute, specifically employing a
64-bit format for this purpose. Such a fixed bit-length representation is
critical in preserving the intrinsic value hierarchy and relative ordering
of each attribute during the process of concatenation. In addition,
the data in 𝑅 must align with the sort definition. To verify this, we
check that 𝑅𝑖 ≤𝑅𝑖+1 (assuming an ascending order) for 𝑖 in the range

[0, len(𝑅)−1). This is achieved by proving the transformed statement
introduced in Equation 4 with the assistance of lookup tables.

Correctness. We prove the correctness of the two properties in-
troduced in the sort gate. (1) Property 1: Permutation Integrity. 𝑅 is
a permutation of 𝐷. The proof follows a similar approach used to
prove that 𝑃 ′ is a permutation of 𝑃 . For details, refer to the proof
in Section 4.1. (2) Property 2: Sortedness. 𝑅 is sorted in ascending
order. Assume, for contradiction, that 𝑅 is not sorted in ascending
order. This implies there exists at least one pair of indices 𝑖 < 𝑗 such
that 𝑅𝑖 >𝑅 𝑗 . Since we enforce the constraints 𝑅𝑖 ≤𝑅𝑖+1 for each pair
(𝑅𝑖 ,𝑅𝑖+1) where 𝑖 ∈ [0,len(𝑅) −1), and the correctness of the range
check gate for 𝑅𝑖 ≤𝑅𝑖+1 is proven in Section 4.1, we guarantee that
𝑅𝑖 ≤𝑅𝑖+1 holds for all valid indices 𝑖. This contradicts the assumption
that there exists at least one pair of indices 𝑖 < 𝑗 such that 𝑅𝑖 > 𝑅 𝑗 .
Therefore, 𝑅 must indeed be sorted in ascending order to satisfy the
defined properties and constraints of the sort operation.

Complexity of a sort gate. Permutation checks between 𝐷 and
𝑅 require |𝐷 | constraints, as per Equation 5. Additionally, checking
𝑅𝑖 ≤𝑅𝑖+1 for 𝑖 ∈ [0,len(𝑅)−1) requires constraints proportional to |𝐷 |,
similar to the range check gate in Section 4.1.

4.3 Group-by
In this section, we outline our methodology for verifying the correct-
ness of group-by operations.

Definition. The input of a group-by gate consists of a table 𝐷

with 𝑛 columns 𝐶1,𝐶2, ...,𝐶𝑛 , where each column represents differ-
ent attributes of 𝐷. The output is a table 𝑆𝐷 with 𝑛+2 columns that
rearranges the records of 𝐷 such that records with identical values
on the grouping attributes G are placed into the same group-by bin.
Alongside the original 𝑛 columns from 𝐷, 𝑆𝐷 includes two addi-
tional columns: (1) start_index: Indicates the starting index of each
group-by bin in 𝐷 . (2) end_index: Indicates the ending index of each
group-by bin in 𝐷. The start_index and end_index are used for the
later aggregation functions such as SUM and others.

Design. Given an input table 𝐷 and the group-by attributes G,
the prover first generates the sorted table 𝑆𝐷 based on the group-by
attributes G. This sorting ensures that records with identical values in
G are adjacent in 𝑆𝐷. To verify that 𝑆𝐷 is a sorted version of 𝐷, we
employ the approach introduced in Section 4.2.

To identify the starting and ending indices of each group-by bin,
we check each record in 𝑆𝐷 on the group-by attributes G. We use
a binary value 𝑏 to indicate whether a record in 𝑆𝐷 is a starting or
ending record, where 1 signifies that the record is either a starting or
ending record. The constraint to check whether two values 𝑣1 and 𝑣2
are equal or not with a binary value 𝑏 is as follows:

𝑏=1−(𝑣1−𝑣2) ·𝑝 (6)

where𝑝 is the value provided by the prover. Specifically,𝑝 =0 if 𝑣1=𝑣2
and 𝑝 = 1

𝑣1−𝑣2 otherwise. To ensure that the prover provides the correct
value of 𝑝, we add the following constraint for each pair of 𝑣1 and 𝑣2:

𝑏 · (𝑣1−𝑣2)=0 (7)

A record is marked as the start of its bin if no preceding adjacent
records share identical values in group-by attributes G. Conversely, it
is marked as the end of its bin if no subsequent adjacent records share
identical values in G.

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

D1

1

1

2

3

2

6

8

10

1

3

1

2

2 2

10 2+10

12

8 8

8

6 6

6

D2 SD1 SD2 MS E O

Sorted D Output Input table: D Start End

1

10

1

1

0

1

1

Figure 5: Illustration with the SQL query “SELECT SUM(D2)
FROM T GROUP BY D1.”.

Correctness. We utilize the sort gate introduced in Section 4.2 to
ensure that 𝑆𝐷 is sorted. The correctness of the sort gate is demon-
strated in Section 4.2. Next, we deduce the correctness of the starting
and ending indices of each group-by bin. According to Equation 6,
if 𝑣1 =𝑣2, then 𝑏 =1, and Equation 7 holds trivially as 𝑏 · (𝑣1−𝑣2)=0.
If 𝑣1 ≠ 𝑣2: (1) If 𝑝 = 1

𝑣1−𝑣2 , then 𝑏 = 0, and Equation 7 holds because
𝑏 · (𝑣1−𝑣2)=0. (2) If 𝑝 =0, then 𝑏=1. In this case, Equation 7 does not
hold as 𝑏 · (𝑣1−𝑣2)= (𝑣1−𝑣2)≠0. Consequently, a valid proof cannot
be generated because the system detects the inconsistency.

Complexity of a group-by gate. The group-by operation is fa-
cilitated through the sorting of associated attributes, followed by a
verification of the accuracy of sorting. Consequently, the computa-
tional complexity and the number of constraints required for ensuring
the correctness of group-by operations are identical to those identified
in the analysis of sorting constraints. Additionally, the number of
constraints (Equations 6 and 7) needed to identify the starting and
ending indices of each group-by bin is 2|𝐷 | where 𝐷 is the input set.

Example 4.2. Figure 5 illustrates the SQL query "SELECT SUM(D2)
FROM T GROUP BY D1." The input table has columns D1 and D2.
The prover adds sorted columns SD1 and SD2, as well as columns S
and E for group-by bin indices. An advice column M is created where
𝑀𝑖 is defined as 𝑀𝑖−1+𝑆𝐷2𝑖 if 𝑆𝐷1𝑖 =𝑆𝐷1𝑖−1, otherwise 𝑀𝑖 =𝑆𝐷2𝑖 ,
with 𝑀0 = 𝑆𝐷20. The final output column O captures the result by
copying only the last record of each group-by bin, as indicated by the
E column.

4.4 Join
Now, we present our methodology for verifying the correctness of
join operations.

Definition. The input of a join gate consists of two tables𝑇 1 and
𝑇 2, each represented by 𝑚 columns 𝐶 (1)

1 ,𝐶
(1)
2 , ... ,𝐶

(1)
𝑚 for 𝑇 1 and

𝑛 columns 𝐶 (2)
1 ,𝐶

(2)
2 , ...,𝐶

(2)
𝑛 for 𝑇 2. These columns correspond to

different attributes of𝑇 1 and𝑇 2, respectively. The joining operation
is performed based on equality conditions between specified joining
attributes J1 from𝑇 1 and J2 from𝑇 2, which may involve any of the
columns 𝐶 (1)

𝑖
from 𝑇 1 and 𝐶

(2)
𝑗

from 𝑇 2. The output is a table 𝐽𝐷

that combines records from𝑇 1 and𝑇 2 where the joining condition
𝑇 1.J1 =𝑇 2.J2 is satisfied. The table 𝐽𝐷 has𝑚+𝑛 columns: (1) The
first𝑚 columns𝐶 (1)

1 ,𝐶
(1)
2 ,...,𝐶

(1)
𝑚 are the attributes from𝑇 1. (2) The

next 𝑛 columns𝐶 (2)
1 ,𝐶

(2)
2 ,...,𝐶

(2)
𝑛 are the attributes from𝑇 2.

Design. Consider two private tables 𝑇 1 and 𝑇 2, and let 𝑝 be the
join predicate. To establish the correctness of the join operations,
the prover calculates several types of witnesses locally. Initially, the
prover creates two new tables 𝑇 ′1 and 𝑇 ′2 to reorder the records
within them. Specifically, each table 𝑇 1′ and 𝑇 2′ is split into two
parts:𝑇 1′𝑝 and𝑇 2′𝑝 contain records contributing to the join predicate,

D1 GD1 GD2 GD1' GD2'

1 1

11

4

7

7

7

4

4

1

6

6

6

6

3

3

3

3

5

4

7

5

5

5

D1' D2' S1 S2

Sorted table Join result Deduplicated tables T1 T2 T1' T2'

1

6

6

6

6

5

4

3

1 1 1

4

2

3

5

2

15

14

13

11

12

12

11

D2 SS1'

7

5

4

S2'

1 1

1 1

3 3

J1 J2 J1' J2'

13

14

15

4

2

12

12

11

Figure 6: Illustration with the SQL query “SELECT T1.D1,
T2.D2’ FROM T1, T2 WHERE T1.D1 = T2.D1’ ”.
while𝑇 1′𝑛𝑜𝑛−𝑝 and𝑇 2′𝑛𝑜𝑛−𝑝 contain records that do not contribute to
the join predicate. The correctness of this reordering is verified using
polynomial constraints, as detailed in Equation 5.

Next, the prover ensures that the records in𝑇 1′ and𝑇 2′ indeed con-
tribute to the join predicate. In the context of primary key-foreign key
joins (we discuss non-primary key-foreign key joins later), instead of
checking the existence of records in one table in another, the prover
proves that𝑇 1′𝑛𝑜𝑛−𝑝 is disjoint from𝑇 2′𝑛𝑜𝑛−𝑝 . Traditional straight-
forward methods involve checking each value in 𝑇 1′𝑛𝑜𝑛−𝑝 against
𝑇 2′𝑛𝑜𝑛−𝑝 , resulting in a large number of polynomial constraints. To
address this, a sorted table 𝑆 is created to store the unique values in
𝑇 1′𝑛𝑜𝑛−𝑝 and𝑇 2′𝑛𝑜𝑛−𝑝 , with a proof of 𝑆𝑖 <𝑆𝑖+1 for 𝑖 ∈ [0,len(𝑆)−1).

However, duplicates 1 in 𝑆 pose challenges in determining their
origin (from the same or different tables). To resolve this, the prover
implements a deduplication strategy through the creation of distinct
versions, namely𝑇 1𝑑𝑒 and𝑇 2𝑑𝑒 . This process ensures that each value
in𝑇 1′𝑛𝑜𝑛−𝑝 is accounted for in𝑇 1𝑑𝑒 and every value in𝑇 2′𝑛𝑜𝑛−𝑝
is accounted for in𝑇 2𝑑𝑒 . To establish this deduplication property, we
leverage the mechanism of lookup tables we proposed in Section 4.1.
The verification of the range check operation, which confirms the
existence of each value in a column within a lookup table (i.e. an-
other column), is adapted to ensure the deduplication of 𝑇 1𝑑𝑒 and
𝑇 2𝑑𝑒 . It is noteworthy that the distinction between𝑇 1𝑑𝑒 ,𝑇 2𝑑𝑒 , and a
lookup table for range check lies in their roles within the PLONKish
circuit configuration. Specifically,𝑇 1𝑑𝑒 and𝑇 2𝑑𝑒 serve as advice
columns, signifying the privacy of the data they contain, while a
lookup table for range check is stored in an instance column,
designating the public nature of the data within it. This distinction is
integral to the overall architecture of the PLONKish circuit config-
uration. The prover establishes that 𝑆 is a permutation of𝑇 1𝑑𝑒∪𝑇 2𝑑𝑒 ,
ensuring that 𝑆 matches the records in𝑇 1𝑑𝑒 and𝑇 2𝑑𝑒 except for the
order. And 𝑆𝑖 <𝑆𝑖+1 holds for ∀𝑖 ∈ [0,𝑙𝑒𝑛(𝑆)−1).

Next, we introduce the method for generating join results from
contributing records. Consider the scenario where the join predicate
between two tables,𝑇 1 and𝑇 2, is defined as𝑇 1.attr1=𝑇 2.attr2. In the
context of primary key-foreign key joins, the uniqueness of primary
keys implies the absence of duplicates, ensuring that each foreign key
in𝑇 1 corresponds to at most one matching row in𝑇 2. Let us denote
𝑇 1′𝑝 and𝑇 2′𝑝 as the subsets of𝑇 1 and𝑇 2, respectively, that are rele-
vant to the join predicate. Within𝑇 1, attr1 serves as the foreign key,
whereas attr2 is the primary key within𝑇 2. For each record in𝑇 1′𝑝 , a

1Since SQL operates on multisets, duplicates are not only a concern in join algorithms but
also throughout the entire query process, as the result must accurately reflect the correct
number of duplicates. In Plookup [19], this can be efficiently managed by encoding
the frequency of elements in the multiset into polynomial commitments. Plookup then
ensures that the correct number of occurrences for each value is preserved during query
execution, maintaining the semantic integrity of SQL operations.

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

search is conducted within𝑇 2′𝑝 to identify any record that satisfies the
join predicate. Upon finding a match, the record from𝑇 2′𝑝 is concate-
nated with the corresponding record from𝑇 1′𝑝 , forming a combined
record. To verify the join results, two key properties must be estab-
lished: (1) Equality Verification: For each concatenated record 𝑟 , we
set the polynomial 𝑟 .attr1−𝑟 .attr2= 0, where attr1 and attr2 are the
attributes from𝑇 1 and𝑇 2, respectively, used for the join. (2) Source
Verification: To ensure all records joined with𝑇 1′𝑝 originate exclu-
sively from𝑇 2′𝑝 , we use lookup tables as described in Section 4.1.

To handle joins without relying on primary key-foreign key rela-
tionships, we compute the join result by pairwise comparing records
from𝑇 1′𝑝 and𝑇 2′𝑝 using a similar procedure. However, the method
introduced above may not include all records contributing to the
join predicate in𝑇 1′ and𝑇 2′. To ensure completeness, we addition-
ally prove that𝑇 1′𝑛𝑜𝑛−𝑝 is disjoint from𝑇 2′ and𝑇 2′𝑛𝑜𝑛−𝑝 is disjoint
from𝑇 1′ using the same deduplication and sorting mechanism. This
ensures that all relevant records are considered in the join operation.

Scalability. When managing a large number of join operations,
the database’s query engine typically executes these joins sequen-
tially, joining two tables at a time. This results in various execution
plans having differing numbers of total and intermediate join results.
Optimizations aimed at reducing the number of these total and in-
termediate join results should be identified and applied prior to the
circuit design phase.

Correctness. To ensure the correctness of the join gate, we ver-
ify the following properties: (1) Property 1: Permutation Integrity.
The sets𝑇 1′𝑝∪𝑇 1′𝑛𝑜𝑛−𝑝 and𝑇 2′𝑝∪𝑇 2′𝑛𝑜𝑛−𝑝 are permutations of the
original tables𝑇 1 and𝑇 2, respectively. The proof follows a similar
approach used to prove that 𝑃 ′ is a permutation of 𝑃 . For details, refer
to the proof in Section 4.1. (2) Property 2: Completeness. 𝑇 1′ and
𝑇 2′ include all records that contribute to the join predicate. Assume
𝑇 1′ misses a record 𝑥 that contributes to the join predicate, i.e., 𝑥 is in
𝑇 1′𝑛𝑜𝑛−𝑝 . We prove that𝑇 1′𝑛𝑜𝑛−𝑝 is disjoint from𝑇 2′ and𝑇 2′𝑛𝑜𝑛−𝑝
using the Element Inclusion and Sortedness properties as detailed in
Section 4.2. This implies𝑥 does not overlap with𝑇 2′, indicating that𝑥
does not contribute to the join predicate. This contradicts the assump-
tion, proving that 𝑇 1′ includes all relevant records. Similarly, 𝑇 2′
includes all records that contribute to the join predicate. (3) Property
3: Exclusivity. 𝑇 1′ and 𝑇 2′ do not include records that do not con-
tribute to the join predicate. Assume𝑇 1′ includes a record𝑦 that does
not satisfy the join condition. During the join process, the concate-
nated record 𝑟 involving𝑦 would fail the constraint 𝑟 .attr1−𝑟 .attr2=0,
contradicting the assumption. Therefore,𝑇 1′ and𝑇 2′ only include
records that contribute to the join predicate. The correctness of the
above three properties ensures the correctness of the join gate.

Example 4.3. Figure 6 illustrates the SQL query "SELECT T1.D1,
T2.D2 FROM T1, T2 WHERE T1.D1 = T2.D1’." Upon receiving the
input tables𝑇 1 and𝑇 2, the prover creates new tables𝑇 1′ and𝑇 2′. The
upper parts contain records contributing to the join𝑇 1.𝐷1=𝑇 2.𝐷1′.
The green area in columns𝐺𝐷1 and𝐺𝐷1′ shows corresponding val-
ues. The prover verifies non-contributing records (gray areas) in𝐺𝐷1
and𝐺𝐷1′ do not intersect by creating columns 𝑆1 and 𝑆2, eliminating
duplicates, and ensuring each value in 𝑆1 and 𝑆2 exists in their respec-
tive sorted columns 𝑆1′ and 𝑆2′. A column 𝑆 is constructed by sorting
𝑆1′ and 𝑆2′. The prover checks 𝑆 is a permutation of 𝑆1′∪𝑆2′ and that
𝑆𝑖 <𝑆𝑖+1 for all 𝑖. The join results, as depicted in the last four columns,
are derived from the green-highlighted values in𝐺𝐷1 and𝐺𝐷1′.

Complexity of a join gate. Given two tables𝑇 1 and𝑇 2 with the
number of records denoted by𝑇 1num and𝑇 2num respectively, we cate-
gorize records that contribute to the join predicate as𝑇 1join and𝑇 2join,
and those that do not contribute as𝑇 1disjoin and𝑇 2disjoin. The counts
of these records are denoted as𝑇 1join_num,𝑇 2join_num,𝑇 1disjoin_num,
and𝑇 2disjoin_num respectively. We omit the copy constraints in this
analysis as they are lightweight. A permutation or range check gate,
sized at𝑋 , implies that𝑋 corresponding constraints are applied across
two columns, each populated with𝑋 values. The computation of con-
straints for a join operation encompasses five distinct categories:

• Two permutation check gates with sizes𝑇 1num and𝑇 2num.
• Two range check constraints with lookup tables (referred to by

Equations 1 and 3) in sizes𝑇 1disjoin_num and𝑇 2disjoin_num for the
deduplication process of𝑇 1disjoin and𝑇 2disjoin.

• One range check constraint with lookup tables (referred to by
Equations 1 and 3) in size𝑇 1disjoin_num+𝑇 2disjoin_num (in the worst
case) for sorting the deduplicated versions of𝑇 1disjoin and𝑇 2disjoin.

• The number of equality check constraints (in the form 𝑥−𝑦=0) for
checking if corresponding values satisfy the join predicate, with
a maximum of either𝑇 1disjoin or𝑇 2disjoin, for columns such as 𝐽1
and 𝐽1′ in the given figure.

• One range check constraint with lookup tables (referred to by Equa-
tions 1 and 3) in the size of max(𝑇 1disjoin,𝑇 2disjoin) to ensure all

records joined with𝑇 join
2 originate exclusively from𝑇

join
2 .

4.5 Aggregation and Other Operations
Since aggregation operations are often applied together with the
group-by operation, we describe how to implement them in conjunc-
tion with group-by. The SUM gate is implemented by establishing a
column that holds intermediate, non-final values for each group-by
bin, as described in Figure 5 and Example 4.2. To identify the starting
and ending indices of each group-by bin, we can follow the method in-
troduced in the Group-by section 4.3. Once we determine the indices
of these boundary records for each group-by bin, we can employ a
similar approach to implement the COUNT gate. With the SUM and
COUNT values determined for each bin, the AVERAGE gate can be
naturally realized through a division gate that processes these values.

Furthermore, the MAX and MIN gates are facilitated by a sorting
mechanism. By arranging the values in ascending order, the small-
est and largest values, corresponding to the MIN and MAX gates
respectively, can be directly identified as the first and last values in
the sorted list. Along with these functionalities, we have implemented
additional aggregate functions such as Standard Deviation, Variance,
and Median. Additionally, we have developed capabilities for string
matching and concatenation by validating the equality of sub-strings
in two strings using lookup tables.

For projection operation, we use selectors to project the desired
columns by setting them to 1 for inclusion and 0 for exclusion. Each
selector controls a multiplication gate, multiplying the column by 1
or 0 based on whether it is part of the projection.

The set operations can be implemented using the methods de-
scribed for the join gate. Set equality is handled by first sorting both
tables and then comparing tuples at each index. Set disjointness is
checked by sorting both tables and ensuring that any consecutive
tuples 𝑅𝑖 and 𝑅𝑖+1 in the sorted list satisfy 𝑅𝑖 ≤𝑅𝑖+1. Set intersection
is achieved as illustrated in Example 4.3 and Figure 6, where the join

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

method is applied to extract common tuples between tables 𝑅 and 𝑆 .
For set union, tuples that are common to both 𝑅 and 𝑆 (found via set
equality) are first removed from 𝑅, and the remaining tuples are then
concatenated to 𝑆 .

We have covered the most common operations used in SQL queries.
Other variations of these operations can be constructed using the meth-
ods introduced in this work, as long as they can be represented within
the circuit framework.

4.6 Combining Gates
PoneglyphDB processes full SQL queries by combining customized
gates for different operators as follows:

1. Mapping Operations to Gates: Each SQL query operation, such
as sorting or joining, is represented by a corresponding gate. This
gate executes the specific operation, ensuring accurate relationships
between inputs and outputs.

2. Predefined Execution Plan and Assembly: The SQL query’s
predefined execution plan outlines the sequence and dependencies
of operations, guiding the assembly of gates in sequence. Each
gate’s output serves as the input for the next, ensuring data flows
correctly through the circuit according to the optimized plan.

3. Combining Gates: Multiple gates are combined to handle various
operations as outlined in the execution plan. The gates are strate-
gically assembled in sequence, with the output of one gate serving
as the input for the next.

Since each operator (such as sorting or aggregation) is verified sepa-
rately, proving each ensures the correctness of the entire query. How-
ever, even when all inputs appear in the output, as with sorting, there
is a risk of data leakage from intermediate steps like comparisons.
This is because intermediate steps, like comparing the relative order
of data elements, may reveal unintended patterns or relationships.
This is why we implement oblivious circuits: to ensure that no infor-
mation about intermediate steps, such as comparisons or data order,
is exposed during proof generation.

Correctness. Let𝐺1,𝐺2,...,𝐺𝑛 be a sequence of gates processing a
query. Assume𝐺1 receives correctly transformed input and operates
correctly, yielding correct output𝑂1. Assume for each𝐺𝑖 (where 1≤
𝑖 ≤𝑛), the output𝑂𝑖 is correct and serves as input to𝐺𝑖+1. Given each
gate’s correctness,𝐺𝑖+1 operates correctly on𝑂𝑖 to produce𝑂𝑖+1. By
induction, the final output𝑂𝑛 produced by the last gate𝐺𝑛 is correct.

5 EXPERIMENTAL RESULTS
We evaluate PoneglyphDB 2 in terms of proving and verification time,
memory usage, operator performance, proof size and scalability.

5.1 Experimental Setup
We implement PoneglyphDB’s circuits and gates using Halo2, a
state-of-the-art ZKP system [44]. The implementation of all Plonk-
ish circuits for the queries is conducted using Rust. Our evaluation
of PoneglyphDB focuses on a selected subset of the TPC-H bench-
mark [39], specifically targeting queries that are representative of
common data analytics workloads.

2The source code, data, and/or other artifacts have been made available at
https://github.com/tuzijun111/halo2-TPCH

We compare with ZKSQL [30], a state-of-the-art solution for using
interactive ZKP in database systems. The interactivity in ZKSQL in-
volves breaking down the computation into smaller sub-circuits to re-
duce the complexity of the overall circuit. These sub-circuits are then
verified interactively, where the prover demonstrates the correctness
of each sub-circuit step-by-step. The interaction ensures that the com-
bined outputs of the sub-circuits correspond to the correct execution of
the SQL query, allowing the verifier to check the correctness of the en-
tire query process incrementally. However, this interactivity increases
the communication and computational overhead, as each round of in-
teraction requires multiple exchanges between the prover and verifier.

To align with existing research evaluations of ZKP-based databases
and to conduct a fair comparison with ZKSQL, we have implemented
the six TPC-H queries identified in their evaluation: Q1, Q3, Q5, Q8,
Q9, and Q18.

In addition, we compare our system with Libra [40], a state-of-the-
art non-interactive ZKP system that leverages the GKR protocol [20],
which is also foundational to vSQL [47]. To the best of our knowledge,
Libra is the most efficient publicly available system utilizing the GKR
protocol. Since the high-level logic for implementing SQL operations
in vSQL can be adapted across various ZKP systems, we use Libra’s
circuit structure to implement SQL operations based on the logic and
optimizations introduced in vSQL. While Libra uses a fixed input
structure, we adopt an alternative approach to avoid the need for relay
gates for inputs that may not be needed immediately. That is, we split
the circuit into multiple parts, ensuring that each part includes only
the necessary inputs in its input layer.

In our experimentation, we adhere to the same query variables
wherever applicable, such as the orderdate filter, to maintain
consistency and relevance in our results. For query Q9, similar to
ZKSQL’s approach, we exclude string pattern-matching predicates
from our evaluation. We converted all floating point operations to
64-bit integer ones in our experiments similar to ZKSQL.

Our experimental setup quantifies the database scale by the size
of the central fact table, lineitem, and scales the dimension tables
proportionally, as described in the TPC-H benchmark specifications.
We report results across three database sizes—60k Rows, 120k Rows,
and 240k Rows—with the lineitem table containing 60k, 120k,
and 240k rows, respectively. These varying sizes provide insights
into the scalability and practicality of PoneglyphDB in handling ver-
ifiable databases across different volumes of data. Unless otherwise
mentioned, our experiments run on 60k Rows.

Our experiments are conducted on Chameleon Cloud [27] using a
Skylake node, equipped with two Intel Xeon Skylake CPUs running
at 2.60 GHz, 192 GB of RAM, and 10 Gigabit Ethernet connectivity.

5.2 Setup
PoneglyphDB eliminates the need for a trusted setup process. Instead,
PoneglyphDB utilizes public parameters. These parameters are essen-
tial for both constructing and verifying proofs and are known to all
parties involved—the prover and the verifier alike. Importantly, these
parameters are not confidential and require no secrecy.

Table 2 details the running time associated with generating these
public parameters. It’s worth noting that the generation of these pa-
rameters is a one-time process; once created, they can be stored and
reused indefinitely. The versatility of these parameters allows for their
application across various circuits, provided the number of rows in the

https://github.com/tuzijun111/halo2-TPCH

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

Table 2: Running time (in seconds) for generating public param-
eters with different maximal number of rows in Plonkish circuits.

Maximal number of rows 215 216 217 218

Running time (s) 104 221 410 832

Table 3: Running time (in seconds) of database commitment over
data of increasing sizes.

The size of the database 60𝑘 𝑅𝑜𝑤𝑠 120𝑘 𝑅𝑜𝑤𝑠 240𝑘 𝑅𝑜𝑤𝑠
Running time (s) 2.89 5.53 10.94

Q1 Q3 Q5 Q8 Q9 Q180

200

400

600

800

1000

1200

Ru
nn

in
g

tim
e(

s)

PoneglyphDB
ZKSQL

Q1 Q3 Q5 Q8 Q9 Q180

5

10

15

20

M
em

or
y(

GB
)

PoneglyphDB
ZKSQL

Figure 7: Running time (left figure) and memory usage (right
figure) for generating SQL queries proofs.

circuit does not surpass the maximum capacity defined by the public
parameters. Consequently, the time spent generating these parameters
is not considered part of the cost associated with generating SQL
query proofs in this work.

Running time of database commitment. The proof generation
for a fixed database commitment can be done once and be reused
for SQL queries that are applied on the database. Table 3 shows the
running time of committing to the 8 TPC-H tables.

5.3 Benchmarking with ZKSQL
We compare the running time of generating proofs for six SQL queries
in PoneglyphDB with that of ZKSQL. The results (the left figure of
Figure 7), reveal that PoneglyphDB—although a non-interactive ZKP
solution—achieves performance that is similar to the interactive ZKP
solution ZKSQL for most queries. In fact, PoneglyphDB outperforms
ZKSQL significantly—by at least up to 40%—for queries Q1 and Q9.
This difference is attributed to the relatively fewer range check (or
filtering) and sort operations required in Q1 and Q9. PoneglyphDB uti-
lizes arithmetic circuits for handling range checks and sorting oper-
ations. Despite the use of lookup tables to optimize the degrees of
polynomial constraints and reduce the circuit size, arithmetic circuits
can become more complex than boolean circuits, which ZKSQL em-
ploys for filtering and sorting operations, especially as the range of
data increases. Nevertheless, PoneglyphDB exhibits enhanced perfor-
mance in join operations, which necessitate arithmetic expressions to
represent polynomial constraints accurately. Figure 10 (right) shows
the memory usage for generating proofs for the six SQL queries in
PoneglyphDB and ZKSQL. PoneglyphDB uses significantly less
memory, ranging from 23% to 60% of ZKSQL’s usage.

5.4 Benchmarking with Libra
Since Libra is a non-interactive ZKP system, we benchmarked against
Libra in terms of three critical factors: proving time, verification time,
and proof size. As shown in Table 4, Libra requires more proving
time than PoneglyphDB. In Libra, complex operations such as sorting

0 10 20 30 40 50
Running time(s)

8 Aggregations
Groupby and Orderby

1 Filter(l_shipdate)
Circuit without any gates

Figure 8: PoneglyphDB’s performance breakdown of
different proof generation steps for Q1.

0 10 20 30 40 50
Running time(s)

1 Aggregation
Groupby and Orderby

2 Joins
3 Filters

Circuit without any gates

Figure 9: PoneglyphDB’s performance breakdown of
different proof generation steps for Q3.

require a large number of basic gates, with each gate limited to two in-
puts, which increases both the circuit depth and size. For comparison
operations in SQL queries, decimal values are represented using full
64-bit binary representations in Libra. Logical operations on these
64-bit binary numbers necessitate circuits that handle each bit individ-
ually, including managing carry bits across the entire bit width. This
bitwise processing, along with the overhead of transforming binary
values to decimal for subsequent arithmetic operations, results in
significantly larger circuits. This increased circuit size leads to longer
proving times. In contrast, PoneglyphDB optimizes the handling of
decimal values by segmenting them into 8-bit chunks and leveraging
lookup tables to efficiently validate and perform operations on each
segment. The larger circuit size in Libra not only increases the proving
time but also leads to longer verification times and larger proof sizes,
as shown in Table 4 for queries Q1, Q3, and Q5.

5.5 Operation Performance
To enhance our understanding of PoneglyphDB’s performance, we
assess the overheads associated with the steps involved in proof gen-
eration. Figures 8 and 9 show a breakdown of the execution time
to generate proofs for queries Q1 and Q3, respectively. We selected
these two queries for our performance evaluation because they encom-
pass a comprehensive range of SQL operations, including multiple
aggregations, joins, group-by, sort, and filtering functions.

The proof generation process begins with the construction of a com-
prehensive circuit, encapsulating all facets of witness generation; this
preliminary phase is described as a “circuit without any gates”. Follow-
ing this, the procedure advances to the integration of polynomial con-
straints—or gates—that correspond to the SQL operations. These op-
erations include filtering, grouping by, ordering, and performing eight
aggregations for query Q1, as well as applying three filters, executing
two joins, a group-by, an order-by, and an aggregation for query Q3.

The results show that the initial step takes over 50 seconds, attribut-
able to the fixed overheads determined by the chosen public parameter;
a larger public parameter size increases this initial step overhead. The
significant overhead in proof generation, notably from the aggrega-
tions in Q1 and the filters and joins in Q3, can be attributed to the
extensive computational resources required. Aggregation operations,
for instance, necessitate the collation and computation across sizable
datasets to yield a singular summary outcome. This task demands

PoneglyphDB: Efficient Non-interactive Zero-Knowledge Proofs for Arbitrary SQL-Query Verification SIGMOD’25, June 22-27, 2025, Berlin, Germany

Table 4: Benchmarking against Libra in terms of proving time,
verification time and proof size.

Proving time
(in seconds)

Verification time
(in seconds)

Proof size
(in kilobytes)

Libra
Q1 812 1.290 435.8

Q3 997 1.212 411.4

Q5 1021 1.227 413.9

PoneglyphDB
Q1 180 0.617 8.6

Q3 161 0.725 24.7

Q5 313 0.739 29.6

Q1 Q3 Q5 Q8 Q9 Q180

500

1000

1500

Ru
nn

in
g
tim

e(
s)

60k Rows
120k Rows
240k Rows

Q1 Q3 Q5 Q8 Q9 Q180

5

10

15

20

M
em

or
y(
GB

)

60k Rows
120k Rows
240k Rows

Figure 10: Proof generation time and memory usage over data
of increasing sizes.
multiple iterations of data processing and polynomial constraints
verification within the circuit, thereby amplifying its complexity and
extending the duration needed for proof generation. Similarly, filters
and joins in Q3 are computationally intensive, as filtering requires
checking each record against conditions, while joins involve aligning
records from different tables based on join keys.

5.6 Scalability
We evaluate the scalibility of PoneglyphDB by generating proofs
with larger workloads. We evaluate with the workload of TPC-H’s
lineitem table at 120k and 240k rows as the lineitem table dominates
the complexity of the SQL queries. As depicted in Figure 10, the
running time and memory consumption increases with the increase in
the size of the dataset. Specifically, the running times for the six SQL
queries—Q1, Q3, Q5, Q8, Q9, and Q18—exhibit a gradual increase
as the database size increases from 60k to 240k Rows.

The running time for query Q1 starts at 180 seconds for 60k rows
and increases to 683 seconds for the 240k row dataset, indicating a pro-
portional relationship between dataset size and observed performance.
This is because the size of our circuits linearly grows with the size
of inputs and all the polynomial constraints enforced on the circuits
have low degrees. This validates our design goal of maintaining low-
degree polynomials in PoneglyphDB’s circuits. Memory usage shows
a similar pattern, with the memory footprint for query Q1 starting at
1.53 GB for 60k rows and increasing to 5.12 GB for 240k rows.

6 Related Work
There is substantial research into verifiable SQL querying, employ-
ing a variety of techniques that ensure the integrity and security of
query results. These methods can be broadly categorized into three
groups: Authenticated Data Structures (ADS) [38], Trusted Execution
Environments (TEE) [35], and Cryptographic Proof Techniques [17].

ADS-based methods use asymmetric cryptography to authenticate
data, requiring extra memory to maintain authenticated data structures
for SQL query verification [4, 33, 34, 41, 50]. While secure, these
methods are generally limited to specific computational tasks.

TEE-based approaches, exemplified by [3, 4, 37, 51, 52], secure
SQL query results through computations performed within trusted

hardware environments. Basic TEE implementations might expose
sensitive data through program traces. Integrating TEE with Oblivious
Random Access Machine (ORAM), as in [23], can obscure such traces
but at the cost of additional computation time, highlighted in [2, 29].

Cryptographic proof techniques, such as zk-SNARKs [6] and zk-
STARKs [5], enable entities to verify the correctness of computations
without revealing underlying data. These techniques have found wide-
spread application across various domains, including blockchain
off-chain computations and privacy-preserving machine learning [24,
25, 31, 53]. These techniques ensure high levels of security but are
resource-intensive, requiring substantial memory to manage numer-
ous intermediate values and considerable time to create proofs.

Prior cryptographic proof systems, such as IntegriDB [49] and
vSQL [47], employ cryptographic verifiable computation to validate
a wide range of SQL queries. While IntegriDB and vSQL ensure data
integrity, they operate in an outsourcing model and do not inherently
provide zero-knowledge properties. An extension of vSQL, referred
to as vSQL+ [48], introduces ZKP; however, it lacks support for ad-
hoc queries and does not thoroughly address practical efficiency or the
translation of arbitrary SQL statements into cryptographic protocols
necessary for such guarantees. Notably, vSQL and vSQL+ are based
on public-coin protocols [21, 22], which can be transformed into
non-interactive ZKP systems using the Fiat-Shamir heuristic [16].
ZKSQL [30] reduces the proving cost by dividing the entire circuit
into smaller sub-circuits to reduce the size of the overall circuit. This
approach supports ad-hoc queries and maintains zero-knowledge
properties, but it shares the common limitations of interactive ZKP.
ZKSQL is based on designated-verifier protocols [22], where the
Fiat-Shamir heuristic cannot generally be applied to transform the
protocol into a non-interactive proof.

Our system, PoneglyphDB, generates non-interactive ZKP using
recursive proof composition [7, 9, 11, 28]. It enhances proof gener-
ation performance by optimizing arithmetic circuits.

7 Conclusion
We introduce PoneglyphDB, a non-interactive ZKP-based database
designed for efficient confidentiality and provability. PoneglyphDB
optimizes proof generation through recursive methods and tailored de-
signs for SQL queries, showing competitive or superior performance
in TPC-H benchmarks compared to existing solutions.

8 Acknowledgments
This research is partly supported by the NSF under grants CNS1815212
and SaTC-2245372.

References
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2002.

Hippocratic databases. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases. Elsevier, 143–154.

[2] AKM Mubashwir Alam, Justin Boyce, and Keke Chen. 2023. SGX-MR-Prot:
Efficient and Developer-Friendly Access-Pattern Protection in Trusted Execution
Environments. In 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1029–1032.

[3] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng,
Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A high concurrency
key-value store with integrity. In Proceedings of the 2017 ACM International
Conference on Management of Data. 251–266.

[4] Sumeet Bajaj and Radu Sion. 2013. CorrectDB: SQL engine with practical query
authentication. Proceedings of the VLDB Endowment 6, 7 (2013), 529–540.

SIGMOD’25, June 22-27, 2025, Berlin, Germany Trovato and Tobin, et al.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scalable
zero knowledge with no trusted setup. In Advances in Cryptology–CRYPTO 2019:
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019, Proceedings, Part III 39. Springer, 701–732.

[6] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Annual cryptology conference. Springer, 90–108.

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2017. Scalable
zero knowledge via cycles of elliptic curves. Algorithmica 79, 4 (2017), 1102–1160.

[8] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
2016. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log
setting. In Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35. Springer, 327–357.

[9] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Recursive proof composition
without a trusted setup. Cryptology ePrint Archive (2019).

[10] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315–334.

[11] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
2020. Recursive proof composition from accumulation schemes. In Theory of
Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA,
November 16–19, 2020, Proceedings, Part II 18. Springer, 1–18.

[12] Ji-Won Byun and Ninghui Li. 2008. Purpose based access control for privacy
protection in relational database systems. The VLDB Journal 17 (2008), 603–619.

[13] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with universal and
updatable SRS. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer, 738–768.

[14] Tal Derei, Benjamin Aulenbach, Victor Carolino, Caleb Geren, Michael Kaufman,
Jonathan Klein, Rishad Islam Shanto, and Henry F Korth. 2023. Scaling
Zero-Knowledge to Verifiable Databases. In Proceedings of the 1st Workshop on
Verifiable Database Systems. 1–9.

[15] Cynthia Dwork. 2006. Differential privacy. In International colloquium on
automata, languages, and programming. Springer, 1–12.

[16] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[17] Uriel Fiege, Amos Fiat, and Adi Shamir. 1987. Zero knowledge proofs of identity.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing.
210–217.

[18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model
and its applications. In Advances in Cryptology–CRYPTO 2018: 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part II 38. Springer, 33–62.

[19] Ariel Gabizon and Zachary J Williamson. 2020. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive (2020).

[20] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. 2015. Delegating
computation: interactive proofs for muggles. Journal of the ACM (JACM) 62, 4
(2015), 1–64.

[21] S. Goldwasser, S. Micali, and C. Rackoff. 1985. The Knowledge Complexity of
Interactive Proof-Systems. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA.

[22] Shafi Goldwasser and Michael Sipser. 1986. Private coins versus public coins in
interactive proof systems. In Proceedings of the eighteenth annual ACM symposium
on Theory of computing. 59–68.

[23] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. 2012. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms. SIAM, 157–167.

[24] Binbin Gu and Faisal Nawab. 2024. zk-oracle: Trusted off-chain compute and
storage for decentralized applications. Distributed and Parallel Databases (2024),
1–24.

[25] Binbin Gu, Abhishek Singh, Yinan Zhou, Juncheng Fang, and Faisal Nawab. 2023.
ML on Chain: The Case and Taxonomy of Machine Learning on Blockchain. In
2023 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 1–18.

[26] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differential
privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018),
526–539.

[27] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs. 2020. Lessons
Learned from the Chameleon Testbed. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association.

[28] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive
zero-knowledge arguments from folding schemes. In Annual International

Cryptology Conference. Springer, 359–388.
[29] Duc V Le, Lizzy Tengana Hurtado, Adil Ahmad, Mohsen Minaei, Byoungyoung

Lee, and Aniket Kate. 2020. A tale of two trees: one writes, and other reads.
Proceedings on Privacy Enhancing Technologies (2020).

[30] Xiling Li, Chenkai Weng, Yongxin Xu, Xiao Wang, and Jennie Rogers. 2023.
ZKSQL: Verifiable and Efficient Query Evaluation with Zero-Knowledge Proofs.
Proceedings of the VLDB Endowment 16, 8 (2023), 1804–1816.

[31] Qi Lin, Binbin Gu, and Faisal Nawab. 2024. RollStore: Hybrid Onchain-Offchain
Data Indexing for Blockchain Applications. IEEE Transactions on Knowledge
and Data Engineering (2024).

[32] Ralph C. Merkle. 1980. Protocols for Public Key Cryptosystems. In Pro-
ceedings of the 1980 IEEE Symposium on Security and Privacy, Oakland,
California, USA, April 14-16, 1980. IEEE Computer Society, 122–134.
https://doi.org/10.1109/SP.1980.10006

[33] Dimitrios Papadopoulos, Stavros Papadopoulos, and Nikos Triandopoulos. 2014.
Taking authenticated range queries to arbitrary dimensions. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
819–830.

[34] Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and
Nikos Triandopoulos. 2015. Practical authenticated pattern matching with optimal
proof size. Proceedings of the VLDB Endowment 8, 7 (2015), 750–761.

[35] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/Ispa, Vol. 1. IEEE, 57–64.

[36] Srinath Setty, Justin Thaler, and Riad Wahby. 2024. Unlocking the lookup
singularity with Lasso. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 180–209.

[37] Rohit Sinha and Mihai Christodorescu. 2018. Veritasdb: High throughput key-value
store with integrity. Cryptology ePrint Archive (2018).

[38] Roberto Tamassia. 2003. Authenticated data structures. In Algorithms-ESA 2003:
11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003.
Proceedings 11. Springer, 2–5.

[39] Transaction Processing Council. 2023. TPC-H Benchmark. http:
//www.tpc.org/tpch/. Accessed: 2023-xx-xx.

[40] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou,
and Dawn Song. 2019. Libra: Succinct zero-knowledge proofs with optimal
prover computation. In Advances in Cryptology–CRYPTO 2019: 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part III 39. Springer, 733–764.

[41] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. 2009.
Authenticated join processing in outsourced databases. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data. 5–18.

[42] Cong Yue, Tien Tuan Anh Dinh, Zhongle Xie, Meihui Zhang, Gang Chen,
Beng Chin Ooi, and Xiaokui Xiao. 2022. GlassDB: An efficient verifiable ledger
database system through transparency. arXiv preprint arXiv:2207.00944 (2022).

[43] Cong Yue, Meihui Zhang, Changhao Zhu, Gang Chen, Dumitrel Loghin, and
Beng Chin Ooi. 2023. VeriBench: Analyzing the Performance of Database Systems
with Verifiability. Proceedings of the VLDB Endowment 16, 9 (2023), 2145–2157.

[44] Zcash. [n.d.]. halo2. https://github.com/zcash/halo2
[45] Zcash. [n.d.]. Halo2 Protocol. https://zcash.github.io/halo2/design/protocol.html
[46] Zcash. [n.d.]. PLONKish Arithmetization. https://zcash.github.io/halo2/concepts/

arithmetization.html
[47] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying arbitrary SQL queries over
dynamic outsourced databases. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 863–880.

[48] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2017. A zero-knowledge version of vSQL. Cryptology
ePrint Archive (2017).

[49] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2015. IntegriDB:
Verifiable SQL for outsourced databases. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 1480–1491.

[50] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. 2012. Efficient query integrity
for outsourced dynamic databases. In Proceedings of the 2012 ACM Workshop
on Cloud computing security workshop. 71–82.

[51] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). 283–298.

[52] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021.
Veridb: An sgx-based verifiable database. In Proceedings of the 2021 International
Conference on Management of Data. 2182–2194.

[53] Yizheng Zhu, Yuncheng Wu, Zhaojing Luo, Beng Chin Ooi, and Xiaokui Xiao.
2023. Secure and verifiable data collaboration with low-cost zero-knowledge
proofs. arXiv preprint arXiv:2311.15310 (2023).

https://doi.org/10.1109/SP.1980.10006
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://github.com/zcash/halo2
https://zcash.github.io/halo2/design/protocol.html
https://zcash.github.io/halo2/concepts/arithmetization.html
https://zcash.github.io/halo2/concepts/arithmetization.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Zero-Knowledge Proofs
	2.2 Arithmetization

	3 System Overview
	3.1 System Model
	3.2 Workflow Overview
	3.3 Application Framework Disuccsion
	3.4 Security Model
	3.5 Data Privacy Issues and Limitations

	4 Custom Gates
	4.1 Range Check
	4.2 Sort
	4.3 Group-by
	4.4 Join
	4.5 Aggregation and Other Operations
	4.6 Combining Gates

	5 EXPERIMENTAL RESULTS
	5.1 Experimental Setup
	5.2 Setup
	5.3 Benchmarking with ZKSQL
	5.4 Benchmarking with Libra
	5.5 Operation Performance
	5.6 Scalability

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

