
IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 1

RollStore: Hybrid Onchain-Offchain Data
Indexing for Blockchain Applications

Qi Lin, Binbin Gu and Faisal Nawab

Abstract—The interest in building blockchain Decentralized Applications (DApps) has been growing over the past few years.
DApps are implemented as smart contracts which are programs that are maintained by a blockchain network. Building DApps,
however, faces many challenges—most notably the performance and monetary overhead of writing to blockchain smart contracts.
To overcome this challenge, many DApp developers have explored utilizing off-chain resources—nodes outside of the blockchain
network—to offload part of the processing and storage.
In this paper, we propose RollStore, a data indexing solution for hybrid onchain-offchain DApps. RollStore provides efficiency in
terms of reduced cost and latency, as well as security in terms of tolerating Byzantine (i.e., malicious) off-chain nodes. RollStore
achieves this by: (1) a three-stage commitment strategy where each stage represents a point in a performance-security trade-
off—i.e., the first stage is fast but less secure while the last stage is slower but more secure. (2) utilizing zero-knowledge (zk)
proofs to enable the on-chain smart contract to verify off-chain operations with a small cost. (3) Combining Log-Structured Merge
(LSM) trees and Merkle Mountain Range (MMR) trees to efficiently enable both access and verification of indexed data. We
experimentally evaluate the cost and performance benefits of RollStore while comparing with BlockchainDB and BigChainDB.

Index Terms—indexing, blockchain, decentralized applications

✦

1 INTRODUCTION

Decentralized Applications (DApps) are applications that
are implemented as smart contracts. A smart contract is
a program where its state and logic are maintained by a
blockchain network1. This makes DApps inherit blockchain
features such as decentralization, transparency, and tamper-
freedom [6]. (However, this does not mean that DApps are
perfectly decentralized or tamper-free. This is because of
the possibility of designing smart contracts in an extendable
way either for legitimate or malicious reasons.) Recently,
there has been a lot of interest in DApps. Various DApps
have amassed hundreds of thousands of users and hundreds
of millions of dollars in assets [12]. DApps span many
areas such as decentralized finance [11], gaming and meta-
verses [18], and supply-chain [49].

DApp developers face many challenges, including the
performance overhead, security concerns, and monetary
cost of writing to blockchain smart contracts. Writing to
blockchain smart contracts often involves significant trans-
action finalization times, with some operations taking tens
of minutes to complete. This delay can hinder the real-time
responsiveness expected in conventional applications [24],
DApps also struggle with scalability issues, especially as
user bases grow. Blockchain networks, on which many
DApps are built, face limitations in terms of transaction
throughput [7]. Additionally, Security is a paramount con-

• Q. Lin, B. Gu, F. Nawab are with the Institute of Computer Science
Department, University of California, Irvine. Email: linq11@uci.edu,
binging@uci.edu, nawabf@uci.edu. Q. Lin is the corresponding author
of the paper.

1. In this paper, we consider permissionless blockchain technologies
such as Ethereum as they are the ones used predominately by DApps [12].

cern in DApps. Smart contract vulnerabilities and consensus
algorithm weaknesses are areas of focus [44]. Notably,
the average cost of a single smart contract operation is
estimated to be around $3 [43]. This monetary factor
directly influences the economic feasibility of DApps de-
velopment and usage. To overcome these challenges, many
DApps are developed using the hybrid onchain-offchain
model [3], [20], [34], [57] which makes them directly
centralized (unless the off-chain part is also decentralized),
non-transparent and open to any tampering, and we call it
the hybrid model for short. In this model, part of the DApp
logic is maintained in the on-chain contract—where “on-
chain” refers to its implementation in the blockchain smart
contract, ensuring strong security. The rest of the processing
and storage of the DApp is maintained by off-chain nodes—
where off-chain nodes are nodes that are outside of the
blockchain network. By delegating part of the processing
and storage to off-chain nodes, both the monetary cost and
performance overhead are significantly reduced.

However, building a complex DApp is still a signif-
icant challenge in the hybrid model, particularly when
constructing a data management system for DApps that
meets diverse performance and security requirements. In
this work, we aim to build a data indexing solution for
DApps in the hybrid model that can flexibly balance the
performance and security of the system to meet different
requirements. Data indexing is a fundamental problem in
data management and a building block for more complex
data management functionality. Therefore, the development
of an efficient and secure data indexing solution for DApps
can have an impact on a wide-range of decentralized data
management systems. Our solution aims to extend and
support the space of blockchain-based data management

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 2

systems [4], [14], [16], [20], [32], [36], [37], [38], [40],
[48]. Currently, existing blockchain-based databases (BB-
DBs) fall under one or more of the following categories:
(1) BBDBs that do not utilize off-chain nodes efficiently
(i.e., by writing all data and/or operations on-chain) [4],
[16], making them inefficient in terms of monetary cost
and performance overhead. (2) BBDBs that utilize off-
chain nodes that are assumed to be trusted/permissioned
(i.e., with closed membership) [32] or utilize trusted exe-
cution environments [14]. These are strong assumptions for
decentralized environments and limit their practicality for
DApps which are widely implemented in permissionless
environments. (3) BBDBs that utilize authenticated data
structures and verification methods to verify query results
using on-chain digests or verifiers [37], [55]. However,
these BBDBs only consider querying immutable data and
suffer from the two limitations above if data is mutable.

We propose RollStore, a data indexing solution for
hybrid blockchain DApps that overcomes the challenges
of prior BBDBs. RollStore has the following properties:
(1) it utilizes off-chain nodes efficiently by not needing to
send raw data or operations to the smart contract. Smart
contracts are only used for performing low-overhead op-
erations (i.e., lightweight verification of data digests). This
makes RollStore efficient in terms of reducing the monetary
cost of writing to the blockchain. (2) RollStore does not
assume that any off-chain node is trusted. (3) RollStore
has a key-value interface where users can both read and
write data. RollStore is the first data indexing solution for
hybrid DApps that can achieve all these three properties.
We envision that RollStore will be augmented with existing
BBDBs as their indexing component to help transform them
to enjoy the aforementioned RollStore properties.

RollStore can achieve the three properties above by
bringing together and innovating in the areas of zero-
knowledge (zk) proofs [53], optimistic and zk rollups [41],
[47], Log-Structured Merge (LSM) trees [31], and Merkle
Mountain Range (MMR) trees [45]. We utilize Zero-
Knowledge Succinct Non-interactive Argument of Knowl-
edge (zk-SNARK) [8], [19]. Zk-SNARK allows an un-
trusted node to perform a computation that changes the state
of the data and produce the new state with a proof of the
new state’s correctness (i.e., that the new state is the result
of applying a correct mutating operation on the previous
state). The proof can be verified with low overhead, thus
allowing cheap verification on-chain. We also utilize the
concept of optimistic rollups (o-rollups) [41]. O-rollups
were proposed as a layer-2 scaling solution for blockchain,
where off-chain nodes perform compute functions on behalf
of the layer-1 blockchain. Then, clients can interact with the
blockchain in a challenge period to challenge the correct-
ness of the off-chain outcomes. Finally, we integrate LSM
and MMR tree structures in the design. LSM’s append-only
nature makes it a good candidate to manage the movement
of data from one stage to another (e.g., data in each
LSM layer corresponds to a different processing/validation
stage). MMR trees allow deconstructing a single MMR tree
into smaller Merkle trees. This allows better modularity and

integration with LSM trees.
RollStore combines the aforementioned technologies in

a new design for hybrid DApp data indexing. RollStore
consists of three types of nodes: (1) an updater node
that manages clients requests, (2) a prover node that is
responsible for generating proofs for operations, and (3) a
backup node that maintains the verified data and associated
proofs. In addition, RollStore includes a smart contract that
performs lightweight verification of digests and proofs.

One of RollStore’s key proposals is a three-stage commit-
ment process to manage the performance-security trade-off
of verification methods. We support three kinds of verifica-
tion methods for updates to off-chain data: (1) zk-SNARK
proofs: this is the most trusted verification as it verifies
the correctness of the data operation and new off-chain
data state. However, it has high computational complexity
requiring a long time to generate proofs. (2) Optimistic
rollups (o-rollups): this method relies on a simple data
digest that is written on-chain. Users agree on the digest
and the data represented by that digest; however, it is not
guaranteed that the corresponding operations and new state
are processed correctly. (3) Off-chain response proof: this
is the weakest guarantee which is for the client to receive a
signed response from the off-chain node before any digest
or proof is written on-chain.

RollStore addresses the challenge of accommodating
diverse user requirements in DApps. Our system is de-
signed to cater to varied needs in terms of security
and performance. For instance, in the context of bank
transactions, scenarios involving small amounts and high-
frequency transactions demand lower latency and higher
throughput, aligning with our first-stage commitments.
Conversely, situations involving large amounts and low-
frequency transactions prioritize strong security and can
tolerate higher latency, aspects provided by our last-stage
commitments. Our system exhibits flexibility by offering
distinct performance-security trade-off services tailored to
different user requirements.

The signed response for both o-rollups and the off-chain
response represents a promise to include and process the
request on a specific LSM page. The client can use the
signed response to punish the off-chain node in case it
lies or acts maliciously—by not honoring its promise to
process the request correctly. (We discuss the punishment
smart contract in the paper. This contract withdraws a
penalty from the off-chain node’s escrow fund if malicious
behavior is proven). RollStore ensures that any falsehood
by an off-chain node will eventually be detected by a
client. This is done by processing transactions through
three stages of commitment, starting from the off-chain
response (fastest commitment but with weaker guarantee),
to o-rollups (slower but with stronger guarantee), and finally
to zk-SNARK (slowest but with strongest guarantee). In the
final step, RollStore checks if the zk-SNARK result matches
the response sent to the client. If they did not match, this is
a sign that the off-chain node lied. This process guarantees
the detection of such malicious acts. This guarantee of de-
tecting malicious acts—with severe monetary punishments

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 3

through the punishment smart contract—is a deterrent for
off-chain nodes to act maliciously in the first stages of
commitment using off-chain response and o-rollups.

The contribution of the paper is summarized as follows:

• RollStore is the first dynamic indexing solution for
hybrid DApps, featuring a three-stage design that
represents a novel commitment path.

• RollStore is the first solution to incorporate both zk
proofs and o-rollups verification in the problem of
indexing by a novel design that builds on LSM and
MMR trees.

• RollStore addresses the multi-level trade-off challenge
between security and performance, effectively tackling
the task of accommodating diverse user requirements
in DApps.

In the rest of the paper, we present background and
related work in Section 2. Then, we present the design
of RollStore in Section 3. An experimental evaluation is
presented in Section 4. We conclude in Section 6.

2 BACKGROUND

2.1 LSM Trees
Log-Structured Merge (LSM) Trees are widely used for
data indexing [31]. LSM trees are designed to support fast
data ingestion by appending entries for write operations
instead of updating the corresponding old entry in-place.
Periodically, appended data is merged with the rest of the
LSM tree. This append-only nature of ingestion makes
LSM trees a suitable candidate for write-intensive work-
loads.

There are many LSM tree variants [31]. Here, we provide
a description of the common and typical design aspects of
LSM trees. Generally, LSM trees contain several levels,
L0, L1, · · · , Lk. Level L0 is maintained in main memory
while other levels are persisted on disk. Incoming write
operations are appended to an in-memory mutable table.
When the mutable table is full, the data in it—represented
as key-value pairs—is ordered and inserted to L0 as a new
page. L0—as well as other levels—has a threshold on the
number of pages. Once this threshold is met, the data in
the L0 pages is merged with the pages in the next level.
This continues until data reaches the final level Lk. When
two levels are merged, one of two widely used techniques
is used: tiering and leveling [10].

2.2 MMR Trees
The Merkle Mountain Range (MMR) tree [45] is a variant
of the Merkle tree [33] which is structured as a group of
underlying Merkle trees (Figure 1). A MMR tree is an
append-only tree where elements are added as leaf nodes
from left to right (Figure 1 shows the case of adding items
1 to 7 from left to right.) Once there are two children nodes
at a level with no parent node, a parent node for the two
children nodes is generated at the higher level. For example,
consider the MMR tree in Figure 1 where internal node
numbers represent the generation order (e.g., Hash_i is
the ith generated hash node). Hash_6, for example, is gen-
erated after Hash_4 and Hash_5 are added (for items 3

Fig. 1: An example of the Merkle Mountain Range tree.

and 4). Adding Hash_6 in turn leads to creating Hash_7.
In the figure, there are three underlying Merkle trees with
roots Hash_7, Hash_10 and Hash_11. These roots are
also called peak nodes, and each underlying Merkle tree is
called a mountain. The MMR root is calculated as the hash
of the peak nodes.

An MMR tree can provide an inclusion proof of a data
item in a similar way to Merkle trees. The inclusion proof
includes the sibling node of every node in the path from
the data item to the MMR root. For example, in Figure 1,
the inclusion proof of item Item_3 contains Hash_5,
Hash_3, Hash_10, and Hash_11. A client receiving the
proof calculates the MMR root using the provided hashes. If
the calculated MMR root matches the original MMR root,
then the client knows that the received item is correct. A
malicious server cannot generate a false inclusion proof of
an item that is not in the MMR tree. This is because any
change to leaf nodes alters the MMR root. Additionally, a
strong one-way hash function would likely (with very high
probability) not lead to a collision of the hashes of two
different input texts [35].

2.3 Blockchain Rollups
Rollups is a layer 2 solution to enhance blockchain scal-
ability, which aims to reduce the performance overhead
and monetary cost of operations on-chain [41]. In rollups,
transactions are aggregated and executed in off-chain nodes,
then the on-chain smart contract maintains the root value
(e.g., Merkle root hash value) which corresponds to the
current state (Figure 2). The off-chain node publishes a
digest for batched transactions, which contains the previ-
ous Merkle root MMR_Pre (0x123456 in the figure) and
the computed new Merkle root MMR_New (0x456789 in
the figure). When such digest is written on-chain, the
smart contract checks whether the previous Merkle root
MMR_Pre in this digest matches the current Merkle root
stored in the smart contract; if it does, the smart contract
updates its state root to the new MMR root, MMR_New.

The main challenge with rollups solutions is that the
off-chain node might act maliciously and provide a new
digest, MMR_New, that corresponds to an incorrect new
state, i.e., the transactions that lead to the new state with
digest MMR_New are incorrect or malicious transactions. To
overcome this challenge, two types of rollups variants are
used: optimistic rollups and zero-knowledge rollups.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 4

Fig. 2: An example of blockchain rollups.

2.3.1 Optimistic Rollups
O-rollups ensures that the new hash that is written on-chain,
MMR_New, is based on correct computation by using an
interactive fraud-proof mechanism [1]. In this approach,
the new digest is written on-chain before verification (op-
timistically). Then, off-chain nodes have an opportunity to
challenge the correctness of the state that is represented by
the new digest, MMR_New. This opportunity remains for
a pre-defined challenge period. After this period expires,
if no successful challenges are raised, then the new digest
is assumed to be correct. Otherwise, if a client challenges
the correctness of MMR_New, then a special smart contract
verifies the correctness of the challenge. If the new state
turns out to be incorrect, the challenge succeeds, and
the smart contract reverts the state to a previous correct
state. The first problem with o-rollups is that the challenge
period needs to be long—several days to a week [41]—to
provide an opportunity for challengers. Another issue is
that it requires an incentive mechanism to encourage active
participants to challenge and compensate them for their
efforts.
2.3.2 Zero-knowledge Rollups
Zk-rollups is a non-interactive solution based on a zero-
knowledge proof mechanism [22], [53]. In zk-rollups, a
digest includes a validity proof. The validity proof proves
that the generated new digest MMR_New corresponds to a
state of the data that is correct, i.e., the new state with digest
MMR_New is the outcome of processing transactions on
the previous state with digest MMR_Pre. The zk-SNARK
protocol is one of the methods used to implement zk-
rollups [8], [17], [19], [21], [50]. The zk-SNARK protocol
is used in the following way by utilizing three components:
a setup node, a prover node, and a verifier node (Figure 3):

• The setup node generates a proving key Pks and a ver-
ification key V ks that will be used to generate and ver-
ify proofs. For zk-SNARK, the setup—which is a one-
time process before operation—must be performed by
a trusted node. After setup, there is no need for trusted
nodes. The generation of the two keys is influenced by
the type of computation that needs to be proven. The
user provides the program to be proven/verified as well
as the inputs to such computation. The user assigns
which parts of the inputs are public and which parts
are secret. In RollStore, for example, the program to
prove/verify is the one that updates the LSM tree and

Fig. 3: Components and flow of zk-SNARK.

produces a new state represented by MMR_New; and
the inputs to the program are the previous state and
its digest MMR_Pre as well as the operations that are
applied to the previous state to generate the new state.

• The prover node is responsible for generating the proof
of the computation outcome. It needs three param-
eters, the proving key Pks, the public information,
Inf_Pub and the secret information, Inf_Secret.
After collecting these parameters, the prover node
generates a proof πs of the computation.

• The verifier node needs three parameters: the veri-
fication key V ks, the public information Inf_Pub,
and the proof πs. After collecting these parameters,
the verifier node generates a decision (True or False).
In hybrid blockchains, the verifier can be a smart
contract. Typical zk-SNARK protocols are designed so
that verification is fast at the expense of a more lengthy
proof generation process. This is suitable for hybrid
blockchains, since generating proofs is performed by
off-chain nodes that do not have the constraints of
smart contracts, while verification is performed on-
chain.

It is important to note that zk-SNARKs offers a different
functionality compared to digital signatures. Digital signa-
tures can be used to verify the authenticity of data that
is signed by a trusted node. However, digital signatures
cannot be used to verify computation that modifies data
from one state to another state. Also, digital signatures rely
on a trusted node signing the data. zk-SNARKs, on the
other hand, can be utilized to verify computation and it
can generate zero-knowledge proofs on an untrusted node.

2.4 Related Work
Blockchain-based databases (BBDBs). BBDBs are
databases that utilize blockchains in various ways to utilize
blockchain’s features such as transparency and immutabil-
ity [4], [14], [16], [32], [36], [40]. Most of this work targets
permissioned blockchain settings, where the blockchain
network has a closed-membership assumption, i.e., all the
participants in the blockchain network are authenticated and
known. This permissioned setting allows faster and cheaper
processing which makes it suitable for enterprise and

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 5

consortium (multi-organization) applications. However, the
closed-membership assumption of permissioned blockchain
prevents their use in DApps that require open-membership
and not rely on a single or group of fixed members. We
target supporting these DApps which is now a large market
with hundreds of thousands of users and hundreds of mil-
lions of dollars in assets [12], [39], [51]. For this reason, we
tackle the unique challenges that are faced when building a
BBDB over permissionless blockchains. Due to their focus
on permissioned blockchains, prior BBDBs [5], [25] do
not factor in the monetary cost and latency challenges of
using permissionless blockchain. This led to them being
unsuitable for DApps due to high costs and latency from
writing raw data directly to the blockchain [4], [14], [16],
[32].

Blockchain rollups. Blockchain rollups was proposed
as a layer-2 scaling solution for blockchains [41] (see Sec-
tion 2.3 for an overview). Prior work utilizes either one of
the two rollups strategies—suffering from the disadvantages
of the chosen method. RollStore combines the two in a
manner that allows benefiting from their advantages while
masking their disadvantages. In particular, o-rollups digests
can be written faster on-chain but their challenge period
takes a long time up to days [41]. On the other hand, zk
rollups’ time to generate the digest/proof to be written on-
chain is longer than o-rollups time to write the digest; but,
that proof is sufficient to finalize the commitment of the
operation without having to wait for days in a challenge
period. RollStore’s design allows enjoying the benefits of
fast o-rollups digest writing (stage 1) as well as the finality
of zk rollups (stage 2). Finally, RollStore introduces a new
kind of rollups that we utilize in stage 0 that is much faster
than other kinds of rollups as it does not require writing
on-chain. This is possible via a penalty strategy using a
penalty smart contract.

Secure and authenticated off-chain processing. There
have been a lot of recent work on utilizing off-chain nodes
to perform compute and storage tasks for blockchain appli-
cations [2], [23], [29], [34]. This is because utilizing off-
chain nodes can reduce the monetary cost and performance
overhead of blockchain applications. The challenge that is
faced by many works in this category is how to utilize off-
chain nodes that might be untrusted. For this reason, trusted
and authenticated data structures were used to provide trust
on the outcome of off-chain nodes’ processing [46], [52],
[54]. These solutions focus on querying and storing data
securely off-chain, but do not support operations that mutate
the state of data, unlike RollStore and blockchain rollups.

Related to this category is the plethora of work in
authenticated data and query processing [27], [56], [58].
These methods can be inherited and utilized in the context
of querying and processing data in hybrid onchain-offchain
applications [4], [46].

3 ROLLSTORE DESIGN

In this section, we present the design of RollStore.

Mutable Table

Updater Node

ClientClient ClientClient

Level L0

Page 0-0 Page 0-1

Backup Node

Level L1

Page 1-0 Page 1-1

Level L2

Page 2-0 Page 2-1

o-rollup (stage 1)

zk-rollup

(stage 2)

�ush

(stage 0)

Prover

Node

Blockchain Smart Contract
Stage 1 proofs

digests of page 1-0 &

(pages 0-0 to 0-(m-1))

MMR Tree 0

MMR Tree 1

MMR Tree 2

digests of page 1-1 &

(pages 0-m to 0-(2m-1))

Stage 2 proofs

digest of L2 MMR root

after merging pages 2-0 to

2-(k-1) and their digests

digest of L2 MMR root

after merging pages 2-k to

2-(2k-1) and their digests

Fig. 4: Data architecture of RollStore.

3.1 System Model and Interface

System components. RollStore consists of the following
components (Figure 4):

• Updater node: the updater receives the write and read
requests from clients. It maintains a mutable table
Tmut, Level L0 of the LSM tree, and a MMR tree
for data in L0, called MMR_0. Data in L0 represents
stage 0 committed data.

• Backup node: the backup maintains LSM levels (L1

and L2), and two MMR trees MMR_1 and MMR_2,
each corresponding to an LSM level. L1 contains data
that is stage 1 committed (o-rollups) and L2 contains
data that is stage 2 committed (zk-SNARK).

• Prover node: the prover performs zk-SNARK com-
putation to generate proofs of L2 pages.

• Smart contracts: on-chain smart contracts handle the
verification and maintenance of digests related to stage
1 and 2 committed data. Also, the smart contract
handles the punishment strategy by verifying whether
an off-chain node is malicious if a challenge is raised
during stage 0 or 1 commitment. If the challenge
indicates malicious activity, then the smart contract
punishes the off-chain node by withdrawing funds
from its escrow account.

The three types of off-chain nodes can be co-located or
placed across different machines. Also, the three types of
nodes can be elastically scaled, where more nodes of a node

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 6

type are added to scale its computation, e.g., prover nodes
can be added to speed up zk proof generation. We discuss
scaling node types in Section 3.3.

System Interface. RollStore provides a read, and write
operation interface for users to read and write data.

1. Write: (In: key-value pair, Out: inclusion proof,
sequence number): this call takes a key-value pair
as the input, the output of this call is the inclusion
proof for the key-value pair and the sequence number
where it is added. Clients use the write interface to
submit write requests to the updater node.

2. Read: (In: key, Out: value, inclusion proof): this
function takes a key as the input, the output of the read
operation is the corresponding value, and the inclusion
proof for that value. The inclusion proof might be
(1) local (stage 0), (2) global without full verification
(stage 1), or (3) global with full verification (stage
2). Clients use the read interface to submit the read
requests to the updater node.

Security model. Off-chain nodes (updaters, backups, and
provers) are not trusted. They can deviate from the protocol
in arbitrary ways, similar to Byzantine failures [30]. Off-
chain nodes can collude together and with clients. The
smart contract logic executes correctly—without deviating
from the protocol—due to running on blockchain. Write
requests are assumed to be authenticated by a client, which
prevents off-chain nodes from fabricating clients requests.

Data model. The following are the main data structures
maintained in RollStore (Figure 4):

1. Distributed LSM tree: The LSM Tree maintains the
key-value pairs appended to RollStore. It has a mutable
table and three levels. The mutable table Tmut is at the
updater node. Tmut holds the most recently appended
entries that are being staged to be pushed to level
L0 of the LSM tree. Level L0 maintains batches of
appended data objects and is stored in the updater
node. A page is added to L0 only after a signed
response is sent back to the clients with operations
corresponding to the page’s data objects. Pages are
assigned a monotonically increasing sequence number
Seq. We denote the ith appended page to L0 as page
P0i.
Level L1 represents pages that are consolidated from
level L0. Before a page is written to L1, its di-
gest must be written on-chain as part of stage 1 o-
rollups. Pages in L1 are also assigned monotonically
increasing sequence numbers, where the ith page to
be added to L1 is denoted P1i. Each page in L1

represents a consolidation of pages in L0. Therefore,
page P1i represents the consolidation of pages P0i∗m
to P0(i∗m)+m−1 from L0, where m is the threshold of
the number of pages in L0 to trigger a consolidation
of pages in L0 and creating a new page in L1. Note
that a new page in L1 is added to the set of pages
in L1 and not merged with existing pages. Therefore,
pages in L1 may have overlapping key ranges.
Level L2 represents pages that are merged from level

L1 after a successful zk proof is generated for them.
Pages from L1 are merged into L2 in the order of their
sequence numbers. Specifically, when the next k pages
at L1 are zk proven, then they are merged with the
pages that already exist in L2. Therefore, after i merge
steps to L2 (where i = 0 corresponds to the first step),
the pages in L2 contain the merged key-value pairs
that represent pages P1(i∗k) to P1(i∗k)+k−1), which
correspond to pages P0i∗k∗m to P0(i∗k∗m)+(m∗k)−1.
Pages are merged from L1 into L2 which means that
key-value pairs in L2 are ordered across pages and
each page has a unique range of key-value pairs that
do not overlap with other pages in L2.

2. MMR trees: The MMR trees are used to create
compact digests of the data in the LSM tree. There
are three MMR trees, each one corresponding to an
LSM level; MMR_0 for L0 in the updater, and MMR_1
and MMR_2 for L1 and L2 in the backup. The digests
of this MMR tree are used for the verification process
of stage 1 and stage 2 committed data.

3. On-chain digests: the smart contract maintains a map
of digests and proofs that are related to stage 1 and 2
committed data. Users query these digests to verify
the authenticity of responses from off-chain nodes.
There are two sets of digests/proofs. The first set is
for stage 1 digests. In this set, each smart contract
digest SC_Digest1i corresponds to page P1i, which
is a consolidation of pages P0i∗m to P0(i∗m)+m−1,
where m is the threshold for the number of pages
in L0 before consolidation. The second set is for
stage 2 digests/proofs. In this set, each smart contract
digest/proof SC_Digest2i corresponds to the ith

merge operation on L2. The ith merge operation in
L2 corresponds to merging the key-value pairs that are
consolidated in pages P1i∗k to P1(i∗k)+k−1, where k
is the threshold of the number of L1 pages to merge
into L2.

Commitment model. A write operation W of client c goes
through three stages of commitment:

1. Stage 0: when the updater sends a signed response
back to c, W is considered stage 0 committed. This
signed response includes acknowledging the operation
is received and promising to add it to page P0i. This
stage of commitment is the fastest as blockchain smart
contracts are not involved. Client c can use the signed
response later to prove maliciousness if an updater has
lied (e.g., operation W is not included in P0i and
later not included in P1⌊i/m⌋, where m is the page
threshold at L0). A penalty smart contract receives
punishment requests from clients that wish to prove
maliciousness and punish malicious off-chain nodes.

2. Stage 1: consider the page P0i that includes W and
the page P1⌊i/m⌋ that is the consolidated L1 page that
includes P0i. When the digest of P0i and P1⌊i/m⌋
are written as SC_Digest1i to the smart contract,
the operation W is considered stage 1 committed. This
takes longer than stage 0 commitment since the digests
need to be written on-chain. However, it provides a

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 7

Fig. 5: Lifecycle of RollStore requests. Red arrows repre-
sent stage 0 and 1 steps of write operations; blue arrows
represent stage 2 steps of write operations; and green arrows
represent steps of read operations.

stronger consistency guarantee—if two clients observe
the state of a page P0i that is stage 1 committed,
then they agree on the state of the page. However,
this stage of commitment does not guarantee that the
page itself is the result of correct computations. This
is because the off-chain node can create a digest of
arbitrary data. The client has to wait for the next stage
of commitment to ensure that the derivation of the
page is correct. However, if the off-chain nodes lie
about stage 1 committed pages, they won’t be able to
perform stage 2 commitment. This consequently leads
to clients sending a challenge request to the penalty
smart contract that punishes the off-chain nodes.

3. Stage 2: Operation W is considered stage 2 committed
when the following is true: the zk proof of a merge
that includes page P1⌊i/m⌋ is verified by the smart
contract and written as SC_Digest2

⌊i/(m · k)⌋, where
k is the page threshold at L1. This is the strongest
correctness guarantee as a page that is stage 2 com-
mitted is guaranteed to have been computed correctly
by zk-SNARK. However, generating such a proof is a
complex and time-consuming process.

3.2 RollStore Core Design and Protocol
We now provide a description of RollStore’s core design
and protocols. This includes the protocols for read and
write operations with a deployment of one updater, one
backup, and one prover. We will describe the protocol as we
follow the end-to-end life-cycle of write and read requests
(Figure 5 shows the flow of operations that we refer to as
steps in the rest of this section).

Stage 0 commitment. A client c creates a signed write
request Wi that has a key-value pair, [Ki, Vi], and signature,
Sc, as payload; Wi = (Sc, [Ki, Vi]). The signed write
request is sent to the updater node (step 0 in the figure).
The updater node, after receiving the signed request for
Wi, adds Wi to the mutable table Tmut of the LSM tree.
Once Tmut is full, the key-value pairs in Tmut are reordered

by their key and written as a new page P0i in L0 of the
LSM tree located in the updater node. Each page in L0

is assigned a monotonically increasing sequence number.
This sequence number will be used by clients to track their
operations and ensure that they are eventually stage 1 and
2 committed. Page P0i’s sequence number is denoted Seqi
(if not mentioned otherwise, assume that Seqi = i).

The MMR tree in the updater node is updated to include
data in P0i. At this point, a signed response, Acki, is sent
back to client c for stage 0 commitment of Wi (step 1).
This response includes: a stage-0 proof of inclusion of Wi

in P0i (using the MMR tree) denoted Prf0
Wi

; also, Acki
includes P0i’s sequence number Seqi and the updater’s
signature Su; Acki = (Su, Seqi, P rf0

Wi
). At this point,

client c considers the operation stage 0 committed and
has a signed response that the updater node promised to
include Wi as part of page P0i with sequence number Seqi
in the LSM tree. If the updater node does not honor this
promise, then client c can use this signed response to trigger
a punishment smart contract.

Stage 1 commitment. The updater node continues
adding pages to L0 until the threshold of the number of
pages, m, is exceeded. At this point, Stage 1 commitment
of pages in L0 starts. The pages in L0—including P0i—are
now mapped by the updater’s MMR tree, MMR_0. A consol-
idated page P1⌊i/m⌋ that consolidates the key-value pairs in
pages in L0 is created. The hashes and sequence numbers
of the pages in L0 and the hash of P1⌊i/m⌋ are sent to
the smart contract (step 2). The smart contract records this
root hash as the stage 1 commitment o-rollups hash for
the pages with the corresponding sequence numbers. This
hash is recorded as SC_Digest1

⌊i/m⌋. Then, the smart
contract emits an event to the updater node and clients about
the new written hash and the corresponding page sequence
numbers2 (step 3 and 3’). The updater node sends a signed
response to the client for stage 1 commitment (step 4).
This response includes the digest of page P1⌊i/m⌋ and the
operation’s inclusion proof.

After stage 1 commitment is performed for pages in L0,
all pages in L0 and the consolidated page P1⌊i/m⌋ are
sent to the backup node to be inserted to L1 (step 5). The
original pages in L0 are sent with P1⌊i/m⌋ to the backup
node as they will be used to provide inclusion proofs for
read request as well as used to generate the zk proofs in
stage 2 commitment. After sending P1⌊i/m⌋ and the L0

pages to the backup node, the pages in L0 are cleared in
the updater node. The page P1⌊i/m⌋ will not be merged
with pages in L1, rather it will be inserted as a new page.
This means that the key-value pairs range of one page in
L1 may overlap with the ranges of other pages in L1.

Stage 2 commitment. After page P1⌊i/m⌋ is added to
L1, the backup node checks if the page threshold for L1,
denoted k, is met. If it did, the backup node starts the stage
2 commitment process using zk-SNARK for pages in L1.

2. A smart contract in permissionless blockchain cannot communicate
directly to off-chain nodes. Here, we use the Ethereum emit operation that
allows off-chain nodes to filter and pull emitted data of interest from the
smart contract. Emit events in Figure 5 are shown as dotted arrows.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 8

This process merges the pages in L1 with the pages in L2.
In the jth merge operation, the pages to be merged from
L1 are from P1j∗k to P1(j∗k)+k−1.

The merge is performed in the backup node. Then, the
merge information is sent to the prover to generate a proof
of the correctness of the merge. The information to prove
the jth merge includes: (1) pages P1j∗k to P1(j∗k)+k−1,
(2) pages P0j∗k∗m to P0(j∗k∗m)+(k∗m)−1, (3) pages in
L2, (4) the MMR root of L2, MMR_2-Pre, before the
merge, and (5) the MMR root of L2, MMR_2-New, af-
ter the merge (step 6). The prover node takes all this
information to generate a proof that: (1) each page in
pages P1j∗k to P1(j∗k)+k−1 is generated correctly from
the corresponding L0 pages, and (2) the merge of pages
in P1j∗k to P1(j∗k)+k−1 with pages in L2 (with MMR
root MMR_2-Pre) yields a new state with MMR root
MMR_2-New.

After the zk-SNARK proof is generated, it is sent to
the smart contract to be validated (step 7). The smart
contract performs the following: (1) it validates the proof,
(2) verifies that the hashes used for L0 and L1 pages
match the ones in stage 1 commit for the pages with
the same sequence numbers, (3) verifies that MMR_2-Pre
corresponds to the previous verification, (4) record the new
proof digest on-chain as SC_Digest2j for future access
by clients, and (5) an event is emitted to the backup node
and clients with operations in pages P1j∗k to P1(j∗k)+k−1

(step 8 and 8’). The writes in P1j∗k to P1(j∗k)+k−1 are
now considered stage 2 committed. The backup node—
once the proof is verified by the smart contract—writes the
merged pages to L2 and clear pages P1j∗k to P1(j∗k)+k−1

from L1.
Read operations. A client reading a key x specifies

the level of the read request: stage 0, stage 1, or stage
2 committed. We now show the process for a stage 0
committed read. (Stage 1 and stage 2 committed read follow
the same process but starting from the backup node at
level L1 for stage 1, and L2 for stage 2). First, the read
request r is sent to the updater node (step A). When the
updater node receives a read request, it responds with a
signed response with the corresponding key-value pair and
MMR inclusion proof (step B). The implications of this
commitment is similar to stage 0 commitment for write
operations where a read client can use the signed response
as a proof of a lie by the updater node in the future.

If the requested key was not in L0, then the read request
moves to L1 (this is also the start point of a stage 1
committed read). The client reads the most recent written
stage 1 and 2 digests from the smart contract to match them
with the response once received. The updater node forwards
the request to the backup node (step C) that responds with
the corresponding key-value pair from a page in level L1

and the inclusion proof. The guarantee of this read request
is similar to a stage 1 committed write where any two read
requests would agree on the result but the result is not
yet verified by a zk proof. If the requested key is not in
L1, then the read request moves to L2 (this is also the
start point of a stage 2 committed read). The backup node

returns the requested key-value pair from L2 if it exists
(step D). The client can check the inclusion proof against
the smart contract and verify that the read data object has
been verified with a zk proof.

In both the stage 1 and stage 2 reads, the client reads the
proof/digest from the smart contract prior to the beginning
of the operation (note that unlike writing to blockchain
smart contracts, reading data from a smart contract is a
fast operation). Consider a read request that goes to a level
Li; if the data object does not exist in that level and the
read is forwarded to Li+1, then a proof of non-existence is
also returned from Li. This can be done by returning the
pages with the ranges that overlap the requested key so that
the client can verify that the key does not exist.

3.3 Scaling Off-Chain Nodes
In this section, we discuss the scaling strategies for the three
node types, updaters, backups, and provers. This allows
each node type to utilize multiple nodes—instead of one
node—to service requests and improve performance and/or
resilience.

Scaling updater and backup nodes. The updater and
backup nodes maintain LSM and MMR data. We discuss
scaling these two types of nodes—which is increasing the
number of updater and backup nodes to achieve higher
throughput through distributing the workload.

RollStore offers a single-key operation interface (Sec-
tion 3.1). The simplicity and efficiency of single-key opera-
tions make them a suitable approach in DApps. Notably, ap-
plications such as decentralized marketplaces utilize single-
key operations for activities like minting, allocation, and
transfer of items; these operations are performed by chang-
ing (or creating) a single data record that corresponds to
the item being managed. Another set of examples include
identity and access management where single-key opera-
tions are used for authentication and access control. Other
than applications where it is sufficient to perform single-
key operations, the strategy we adopt is to store relevant
data together within one shard. This approach—given data
locality—enables ordering more complex operations even
before stage 2 commitment. Our scaling strategy centers
around single-key operations, involving the sharding of data
into n shards. Each shard is maintained by a separate set
of two nodes, one for the updater and the other for the
backup. The smart contract is also deployed as n inde-
pendent instances, one for each shard. Each shard operates
independently, enabling parallel processing of data, thereby
allowing the system to scale effectively. This means that
different shards can handle different parts of a complex
write operation simultaneously. This isolation enables com-
plex write operations to be performed on one shard without
affecting the data in other shards. However, it is crucial
to note that while each shard functions autonomously, our
system incorporates a coordination mechanism to address
transactions that involve data across multiple instances.
This coordination is essential for processing complex multi-
data write operations. The global ordering mechanism
realized through a blockchain-based smart contract (Roll-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 9

Store stage 2), plays a pivotal role in orchestrating these
operations. This ensures that transactions touching data
on multiple instances are executed in a coordinated and
deterministic order (see Section 3.6, Theorem 4).

Scaling prover nodes. The prover node is tasked with
generating the zk proofs of stage 2 commitment. Scaling
the prove operation is important as it is a lengthy process.
To scale proving tasks, we maintain n provers and distribute
the zk proving workload across the n provers. Specifically,
each zk proving task Task_i is divided into n subtasks,
Tasksub_1 ...Tasksub_n. Each subtask is responsible
for proving N/n data items, where N is the total number
of data items in the prove task.

Resilience and availability. Increasing the numbers of
nodes can also serve the purpose of increasing the crash
resilience and availability of RollStore. Specifically, for
stateful node types—updaters and backups—the state of
each node can be maintained by a replication cluster [9].
Therefore, the failure of one node can be tolerated by
the rest of the nodes in the cluster. For stateless nodes—
provers—adding and replacing provers is straight-forward,
since the proving task is stateless. Therefore, in the case
of a prover failure, it can be replaced by another node that
takes over processing the requests from the backup node.

3.4 DApp-Indexing-as-a-Service Model
In this section, we discuss the payment model to enable
DApp-indexing-as-a-service. In this model, each off-chain
node deposits an amount of cryptocurrency to an escrow
fund in the penalty smart contract in the setup stage.
the addresses (Ethereum addresses and IP addresses) of
off-chain nodes that successfully deposited the fund in
the smart contract would be stored in the penalty smart
contract.

The penalty smart contract is initialized with the
following variables: OC_AddressE, OC_AddressIP,
OC_Deposit, and OC_Signature. The first two vari-
ables store the Ethereum address and IP address of the
off-chain node that signed up as a server node. The
OC_Deposit variable sets an amount of how much
cryptocurrency (Ether) should be deposited to successfully
sign up. The variable OC_Signature stores the digital
signature of the off-chain node that provides the service.
Users can send their requests (writes or reads) to valid
server nodes that successfully stored their addresses in the
penalty smart contract. The valid server nodes process these
requests and interact with other nodes and the blockchain
network.
3.5 Failure Examples
In this section, we briefly present the new threats and
discuss how RollStore addresses them. RollStore allows
servers to act maliciously, but it guarantees the detection of
the malicious act and the punishment of dishonest servers.
RollStore handles these threats using a three-stage security
protocol, ensuring that the committed state (stage 2) is con-
sistent across all honest nodes, and any malicious act can
be detected and punished in the three-stage commitment
process

Fig. 6: Incentive mechanism.

Threat in stage 0 commitment. An adversary might de-
liberately respond incorrectly during stage 0 commitment.
In this scenario, if the adversary is an updater node, given
a writes request Wi, the malicious updater can return a
wrong sequence number Seqw, or wrong inclusion proofs
Prfw

Wi
. RollStore guarantees that any incorrect response

will be detected and punished.
In stage 0 commitment, the updater provides a signed

response back to the client that its write request Wi is part
of a page P0i in L0 with sequence number Seqi. Prf0

Wi

is the signed inclusion proof of the write in page P0i.
An updater must use this page P0i during the o-rollups
operation of stage 1 commitment. The client can verify that
this is the case by observing the hashes that were written
on-chain for stage 1 commitment.

As shown in Figure 6, we also designed an incentive
mechanism to encourage clients to verify and challenge
such malicious behavior. For example, if the hash that
corresponds to sequence number Seqi is the same as the
one received in the stage 0 response, then the promise is
honored. Otherwise, the client starts the penalty process.
The client sends a request to the penalty smart contract with
the following input: the received stage 0 response received
from the updater node, i.e., Acki = (Su, Seqi, P rf0

Wi
). The

penalty smart contract verifies whether the penalty should
be applied by verifying the authenticity of Acki (that it is
signed by the updater signature Su), and checking whether
the MMR root hash in Prf0

Wi
equals the o-rollups hash in

the smart contract for the page with sequence number Seqi.
If the hash is different, the penalty is applied. The client
can retrieve the deposit from that adversary node. However,
if clients submit an invalid challenge request to the penalty
smart contract, the smart contract will impose an additional
payment that clients are required to pay. As a consequence
of an invalid challenge, clients will also face a temporary
restriction from connecting to our system.

Threat in stage 1 commitment. An adversary can
upload the wrong digest of the stage 1 commitment or
send the wrong pages used in the proof generation. In this
scenario, if the adversary is an updater node, for a write
operation Wi in page P0i with sequence number Seqi, the
stage 1 commitment hashes Hash_o in the smart contract
include the hash for P0i as well as P1i which is the merge
result of page P0i and other L0 pages. The malicious node
can upload a wrong digest Hash_w instead of Hash_o
or send the wrong pages P1w used in the later zk proof
generation. RollStore guarantees that no incorrect response
can pass through the rest of the system and will be detected,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 10

thus not harming the system.
In stage 1 commitment, the client observes the stage 1

commitment hashes that are written to the smart contract
for stage 1 commitment. RollStore protocols ensure that
these hashes are the same ones that will be used in stage
2 commitment. This is done because the smart contract—
when verifying the proof in stage 2 commitment—verifies
that the hashes used to generate the zk proof are identical
to the ones used in stage 1 commitment by o-rollups. This
is performed by checking which hashes were written to the
smart contract during stage 1 for the corresponding pages
used in the proof generation. In the case of Wi, this includes
the hashes for pages P0i and P1i. Since this is guaranteed
by the verification process in stage 2 commitment, the off-
chain nodes must keep their promise in using the stage
1 pages in stage 2 commitment. If they commit a false
digest Hashw, then they would have to indefinitely delay
the stage 2 commitment, and if they send the wrong pages
P1w, they cannot generate the correct zk proof. Thus, they
cannot pass through to the final commitment. Clients can
then send requests to the penalty smart contract to penalize
such incorrect behaviors.

Delay threat. In both stage 0 and stage 1 commitment,
another type of malicious act that the off-chain nodes may
do is to delay the next stages of commitment indefinitely.
In this case, we designed a two-step process to prove and
punish the off-chain nodes.

Consider the case of a client—with operation Wi in
P0i—that received a stage 0 or stage 1 response r at
time t. If the user suspects that the off-chain nodes are not
continuing the processing of the request and future stages
of P0i. The first step is to send a delay-notification request
to the penalty smart contract. The input to this notification
is a proof that a signed response is received from the off-
chain node for page P0i. The smart contract records this
notification with the blockchain block number that it was
written in, b1i . Now, the off-chain nodes have an opportunity
to finalize the commitment of P0i before the second step.
The initiation of the second step is contingent on reaching a
future block b2i , satisfying the condition b2i −b1i > bt, where
bt represents the threshold specifying the minimum number
of blockchain blocks that must have elapsed before the
second step can be triggered. This is a predefined number
that is agreed on by the off-chain nodes and should be
sufficiently large to allow for processing requests. If bt
blocks passed and the client still observes that P0i is not
committed, it starts the second step by sending a delay-
followup request. This request references the first step. The
penalty smart contract checks that bt blocks have been
committed since the previous notification and if P0i is still
not committed. If both conditions are true, then the penalty
logic is applied and funds are withdrawn from the off-chain
node escrow fund.

This strategy can be applied separately for stage 0 and 1
commitment delays where there is a threshold bt for each
type of commitment. We use a block number threshold as
it is a standard practice in smart contract development. The
reason for using block numbers between requests is that it

is predictable since the commitment of a block typically
takes a predefined amount of time.

3.6 Safety
In this section, we formally prove the safety of read and
write operations in RollStore. Specifically, we first demon-
strate that the guarantees of each level of commitment are
met, and then we discuss the linearizability of RollStore.
With these theorems established, RollStore ensures that any
security violations will be detected and punished eventually,
and the final commitment stage (stage 2) remains lineariz-
able across all honest nodes.

Theorem 1: (Stage 0 safety guarantee) For a write
w that is stage 0 committed in page P0i with sequence
number i, either (1) the write w is going to be part of page
P0i that is committed in stage 1 as part of the o-rollups in
the consolidated page P1⌊i/m⌋, where m is the threshold
of the number of pages in L0; or (2) the client can prove
that the updater provided a false promise to include w in
page P0i.

Proof: We prove this statement by contradiction. As-
sume to the contrary to the defined guarantee that there
is a write w that is stage 0 committed as part of page
P0i, however, (1) the off-chain node used another page
P0′i (with the same sequence number as P0i) during stage
1 commitment for page P1⌊i/m⌋, and (2) the client cannot
prove the fake promise about w.

If page P0′i was used in stage 1 o-rollups of P1⌊i/m⌋
instead of P0i, this means that the stage 1 digest written on-
chain, SC_Digest1

⌊i/m⌋ for page P0i is different from
the one returned to the client during the response (step 1 in
Figure 5). This is because any change to the contents of the
page would lead to a different digest. Therefore, the client
knows that the off-chain node lied by detecting the different
digests. The client can then prove that the off-chain node
promised to include w as part of P0i by showing the signed
response received in step 1. This is a contradiction, which
proves the guarantee.

Theorem 2: (Stage 1 safety guarantee) For a write
w that is stage 1 committed in page P1j with sequence
number j, the following is guaranteed: the write w in P1j

is going to be part of the j
k

th
merge to L2, where k is the

threshold of the number of pages in L1.
Proof: We prove this statement by contradiction. As-

sume to the contrary to the defined guarantee that another
page P1′j with sequence number j—that does not include
w—was included in the merge to L2. This means that
the digest SC_Digest1j (which corresponds to P1j) in
the smart contract is different than the digest of the page
P1′j . However, during the smart contract verification of the
merge proof, part of the verification is that the digest of
L1 pages used in the merge are equivalent to the ones
that were written to the smart contract during stage 1
commitment; this includes SC_Digest1j. This means that
the proof verification in the smart contract will fail, which
is a contradiction, which proves the guarantee.

Theorem 3: (Stage 2 safety guarantee) For a write w
that is stage 2 committed (i.e., the corresponding L1 page

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 11

P1i is stage 2 committed as part of merge number j), the
following is true: any stage 2 read operation will receive
the key-value pair of w if it reads from any merge starting
from merge j to merge j′ − 1 where the first write w′ that
overwrites w is in merge j′.

Proof: We prove this by contradiction. Assume to the
contrary that a stage 2 read operation that reads from merge
j∗, where j < j∗ < j′, observes a value written by w∗
that is different from the value written by w.3 As part of
the assumption, w is part of the state of L2 as of merge j.
Therefore, returning another write value w∗ after merge j∗,
but before merge j′ can happen in one of two ways: (1) a
write w∗ is introduced in a merge J between j and j∗. This
means that w∗ is part of the L0 pages that correspond to
merge J . This is a contradiction since we assume that the
first write to overwrite w, w′, is performed as part of merge
j′ that is after j∗. (2) the updater returns the value of w∗
that is not part of any merges between j and j∗. However,
to be returned and verified by the reader, the write w∗ must
be part of L2. Being incorporated in L2 necessitates that
a zk proof was obtained for it in some merge J between
j and j∗. This is a contradiction since we assume that the
first write to overwrite w, w′, is performed as part of merge
j′ that is after j∗.

Isolation Guarantee. RollStore guarantees linearizabil-
ity [26] of operations that are stage 2 committed. We focus
our isolation guarantee discussion on stage 2 commitment
since it represents the point of final commitment and
verification of operations.

Theorem 4: (Consistency of stage 2 operations) Any
history H of stage 2 operations is linearizable.

Proof: A history H of read and write operations is
linearizable [26] if (1) H is equivalent to some sequential
history S, and (2) the partial time order <H is a subset of
the equivalent sequential history order <S .

First, we prove the first property—H is equivalent to
some sequential history S. RollStore performs stage 2
merge operations one-by-one in the order of the pages in
L1 which in turn are consolidations of ordered L0 pages.
In particular, the jth stage 2 merge operation commits the
operations consolidated in pages P1j∗k to P1(j∗k)+k−1,
where k is the threshold of the number of pages in L1.
Now, we construct the equivalent sequential history S.
Consider the commit point for write operations in P1j∗k
to P1(j∗k)+k−1 to be the time when the verification is per-
formed and the proof is written on-chain. A read operation
that reads a value written by w that is committed as part
of the jth merge is ordered in the sequential history to be
between the jth and (j + 1)th merge. The history H is
equivalent to this constructed sequential history S.

Second, we show that <H is a subset of <S . This
is trivial for write operations as the commit points are
ordered by the smart contract so that the values committed
in the jth merge precedes the values committed in the
(j + 1)th merge. For read operations, consider a read r

3. We ignore the trivial case when there are multiple writes to the same
key of w in the merge j. In such a case, the most recent write—the one
in the highest sequence numbered L0 page—overwrites the others.

that reads a value committed in the jth merge. Consider
the following partial time order in H. The read r starts at
time tstartr and terminates at time tendr . The read algorithm
checks the smart contract first to inquire about the most
recent successful stage 2 merge in L2. It receives the proof
and digest for the jth merge. Then, the read operation is
serviced from the backup node. From this timeline, we
deduce the following about the partial time ordering in
H: (1) tcommit

j < tendr , where tcommit
j is the commit

time of the jth merge in the smart contract. This is
true because the read observes the commit digest/proof.
(2) tcommit

j+1 > tstartr . This is true because the read observed
the jth merge in the smart contract, which is a point after
tstartr , therefore, the next merge must have happened after
the start of the read operation. Therefore, r can be assigned
a commit time in the history in any point between tstartr

and minimum(tendr , tcommit
j+1). This partial time ordering

is part of the constructed sequential ordering in S.

4 EVALUATION
In this section, we experimentally evaluate the perfor-
mance of RollStore in comparison to two blockchain-
based databases (BBDBs): BlockchainDB [16] and
BigchainDB [32], as well as compare our system with
an oracle-based logging system, WedgeBlock [42]. We
perform our experiments by deploying off-chain nodes on
Chameleon cloud machines [28]. Each machine has two
64-bit Skylake CPUs with 192 GB of RAM and 300 GB
of storage. We used the Zokrates [15] framework to im-
plement the zk-SNARK proof mechanism. The underlying
blockchain network we utilize for our experiments is the
Ropsten network, a widely used Ethereum test network.

Default configuration. For each experiment, we use
the following default configuration. The threshold of the
mutable table Tmut, level L0, and level L1 are set to 64
writes, 7 pages, and 3 pages, respectively. The default batch
size is 512. The main variables we vary are the batch size
and the number of server nodes.

Benchmark. We use the Yahoo! Cloud Serving Bench-
mark (YCSB) to generate the workload for experi-
ments [13]. YCSB is a key-value store benchmark that
offers various workloads. In our experiments, we utilize:
(1) Workload A: 50% write operations and 50% read
operations, and (2) Workload C: read-only workload. We
use a uniform distribution to choose access keys.

Evaluation objectives. Our evaluation addresses:
• What are the performance characteristics of RollStore

in terms of throughput, transaction cost, and latency?
• What is the impact of the batch size on performance?
• How does the performance of our system compare to

other hybrid blockchain-based database systems?
• How does the performance of our system compare to

that of an oracle-based system?
Metrics. The metrics we measure are:
• Throughput: this metric represents the throughput in

terms of operations per second. We measure and report
the throughput for each stage of commitment.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 12

• Latency: the average latency to perform the three
stages of commitments for writes and the average time
to serve read requests. The latency of zk-SNARKs
proof generation for Rollup-2 includes the time of
setup and proof generation. Since the time of setup is
much less than that of the proof generation, we show
both latencies together.

• Transaction cost: the transaction fee cost incurred by
optimistic rollups (stage 1 commit) and zk proving
(stage 2 commit) in terms of dollars per thousand
operations (we assume that the Ether price is $1500).
Although the base gas fee may fluctuate, our experi-
ments were conducted in close time proximity, during
which we did not experience significant fluctuation
in gas cost. The cost in Ether indicates the resource
consumption on blockchain for methods accurately.

Comparisons. We compare the performance of our sys-
tem on two widely used blockchain networks, Ethereum
(permissionless) and Tendermint (permissioned). It is worth
noting that the Ethereum mainnet does not provide direct
support for key-value store tasks. As a result, the throughput
on the mainnet cannot be directly compared to the through-
put of RollStore. To evaluate the performance of RollStore,
we select two database systems that are deployed on these
two networks, namely BlockchainDB (built on Ethereum)
and BigChainDB (built on Tendermint). For an oracle-
based system, while WedgeBlock does not support a key-
value store service, it does provide a secure logging service
that closely resembles a key-value store service. Hence,
the comparison between our system and Wedgeblock is
justified for the purpose of performance evaluation

• BlockchainDB [16]: BlockchainDB is a hybrid BBDB
that utilizes a blockchain layer as a storage layer
and builds a database layer on top of it. We focus
on the performance of read and write operations in
BlockchainDB when a permissionless blockchain is
used4. BlockchainDB stores all data on-chain. This
leads to high monetary costs and latency overhead
for write operations. For both reads and writes,
the operation is first performed on off-chain nodes
(BlockchainDB-1), which is done fast, and then per-
formed on-chain (BlockchainDB-2), which is full on-
chain execution. When evaluating BlockchainDB, we
utilize the Ethereum testnet network called Ropsten.

• BigChainDB [32]: BigChainDB is a BBDB that is im-
plemented as a permissioned blockchain. A Byzantine
agreement protocol, Tendermint, is used to implement
a blockchain ledger and a database layer runs on
top of this blockchain. This makes BigChainDB not
suitable for DApps that require decentralization and
open membership (permissionless) blockchains. How-
ever, we include it in our evaluation to understand the
differences in performance characteristics compared
to RollStore. Being on a permissioned blockchain,

4. BlockchainDB is designed for permissioned settings. We make it with
permissionless settings here as it is the closest BBDB that can be adapted
to utilize permissionless settings. We also compare with BigChainDB
while maintaining its permissioned settings.

1 2 4 8 16 32
batch size

10−1

100

101

102

103

Th
ro
ug
h
ut
 (o

 /
s)

1 2 4 8 16 32
batch size

10−2

10−1

100

101

La
te
nc
y
(s
ec
on
d)

RollStore-0
RollStore-1
RollStore-2

BlockchainDB-1
BlockchainDB-2

BigchainDB
WedgeBlock

Fig. 7: Throughput and latency in small batch sizes.

BigChainDB does not incur monetary costs. Also,
because the database layer is integrated with the
permissioned blockchain layer, the performance of
operations is dependent on the performance of the
underlying consensus mechanism.

• WedgeBlock [42]: WedgeBlock, a data logging plat-
form for DApps, introduces the Lazy-Minimum Trust
(LMT) concept to address high latency challenges.
In LMT, the off-chain node adopts a lazy approach
by asynchronously writing the log entry digest on-
chain, promptly responding to user requests before the
actual write occurs. This strategy is supported by a
robust trust-proof and penalty mechanism, reminiscent
of an oracle solution. We include WedgeBlock in our
comparison to explore variations in the performance
and cost of RollStore compared to an oracle-based
solution.

We utilize and adapt available implementations of both
BlockchainDB [16] and BigChainDB [32] that are made
as a part of a study of hybrid BBDBs performance [20].
For the oracle-based system, we employ an available im-
plementation of WedgeBlock [42].

4.1 Baseline performance
In baseline experiments, we configure RollStore to have one
updater node, one prover node and one backup node. The
three nodes are located on three different machines and
we use YCSB’s workload A. The following experiments
are performed while varying the batch size from 1 to 32
operations per batch (small) and from 64 to 2048 operations
per batch (large).

Throughput: The left side of Figure 7 shows the
throughput results for small batch sizes. RollStore stage 0
commitment (RollStore-0) achieves the highest throughput.
This is because all processes in stage 0 are performed lo-
cally and do not need to coordinate with the smart contract.
Both stage 0 and stage 1 (RollStore-1) throughputs increase
with the increase in the batch size. Batching amortizes the
cost of committing operations. In the case of RollStore-1,
when batches are bigger, this means that the number of
writes to the blockchain is lower, which increases perfor-
mance. Stage 2 (RollStore-2) achieves a lower throughput
compared to stage 1, primarily due to the added overhead of
performing a compute-intensive proof generation process.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 13

64 128 256 512 1024 2048
batch size

10−1

100

101

102

103

Th
ro
ug
h
ut
 (o

 /
s)

64 128 256 512 1024 2048
batch size

10−2

10−1

100

101

102

103

104

La
te
nc
y
(s
ec
on
d)

RollStore-0
RollStore-1
RollStore-2

BlockchainDB-1
BlockchainDB-2

BigchainDB
WedgeBlock

Fig. 8: Throughput and latency in large batch sizes.

Unlike RollStore-0 and RollStore-1, the performance of
RollStore-2 does not significantly improve as the batch size
increases. This is because the performance of RollStore-
2 is primarily determined by the time required for proof
generation, which becomes increasingly challenging as the
batch size increases.

The local (off-chain) throughput of BlockchainDB
(BlockchainDB-1) achieves a higher performance compared
to RollStore-1 because it does not require interacting with
the blockchain. However, when it comes to committing
operations on-chain in Ethereum, BlockchainDB-2 exhibits
poorer performance compared to RollStore-1 and even
underperforms RollStore-2. This is because BlockchainDB-
2 writes raw data on-chain which increases the overhead
of interacting with blockchain. BigChainDB performance
is between RollStore-0 and RollStore-1. This is because it
does not utilize permissionless blockchain, which means
that it does not suffer from the high overhead associated
with it. However, BigChainDB incurs overhead from the
underlying permissioned blockchain, Tendermint, and the
consensus mechanism, leading to worse performance than
RollStore-0. WedgeBlock outperformed BigChainDB as the
batch size increased, but it lagged behind RollStore-0.
However, the gap between these two systems narrowed
when the batch size reached 32 operations per batch.

The left side of Figure 8 displays the throughput results
for large batch sizes. The findings are similar to those
for small sizes: our system achieved the best performance
in both the off-chain process (RollStore-0) and on-chain
process (RollStore-1). Furthermore, it demonstrated im-
proved performance compared to its results with small
sizes. The performance trend remains consistent, particu-
larly in Stage 1 (RollStore-1), where throughput increases
rapidly as batch sizes become larger. While WedgeBlock
achieved better performance than our system in specific
batch sizes (64 and 128), our off-chain process (RollStore-
0) outperforms WedgeBlock as batch sizes become larger.

Latency: The right part of Figure 7 shows the la-
tency results for small batch sizes. The latency of
off-chain operations—RollStore-0, BlockchainDB-1, and
BigChainDB—are the lowest as they do not need to write
to a permissionless blockchain smart contract. The latency
of RollStore-1, BlockchainDB-2, and WedgeBlock—both

121

122

123

38

39

40

64 128 256 512 1024 2048
0

1

2

batch size

Co
st

 (d
ol

la
r p

er
 1

00
0

op
er

at
io

ns
)

RollStore-1
RollStore-2

BlockchainDB-2 WedgeBlock

Fig. 9: Cost in different batch sizes.

requiring a write to the smart contract—is similar at around
20 seconds, which is proportional to the time to write to
the smart contract. Although the compute-intensive proof
generation process in RollStore-2 gradually increases its
latency, it outperforms Ethereum (BlockchainDB-2) in cer-
tain batch sizes where the advantage of batching outweighs
the time required for proof generation.

The right part of Figure 8 shows the latency results for
large batch sizes. The latency of RollStore-2 increases very
rapidly as it requires more time for proof generation in
larger batches. The latency of off-chain operations also
increases as more processing time is needed for larger
batches. However, it’s worth noting that the latency of
RollStore-2 can be reduced by adding more server nodes, as
discussed in Section 3.3. We will introduce the scalability
performance in Section 4.2. In the case of WedgeBlock,
it demonstrated lower latency compared to our on-chain
process (RollStore-1), although it lagged behind our off-
chain process. This can be attributed to its reliance on an
oracle-based design, which depends on security guarantees
provided by the oracle design. While this design effectively
reduces communication latency between the off-chain and
on-chain elements, it still results in higher latency compared
to our dedicated off-chain process and sacrifices the security
guarantees provided by the blockchain mainnet.

Transaction cost: Figure 9 shows the monetary cost
results. In RollStore-1, each batch requires sending one
transaction only—that writes a simple set of digests—to
the blockchain. Therefore, the transaction cost in stage 1
will decrease when the batch size becomes larger. This is
not the case in stage 2. Since we need to send the proof pa-
rameters to the blockchain, the size of these parameters also
increases with the increase in the batch size; this increases
the cost. For this reason, the transaction cost per thousand
operations in stage 2 does not change significantly when the
batch size becomes larger. For Ethereum (BlockchainDB-
2), the monetary cost is the largest (around $122 per 1000
operations). This is because raw operations are written on-
chain, unlike RollStore that only writes digests and verifies
proofs. The cost in WedgeBlock also decreased with the
increase in batch size. Both stage 1 (RollStore-1) and stage
2 (RollStore-2) can reduce the cost of interacting with the
permissionless blockchain. (RollStore-0, BlockchainDB-1,

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 14

64 128 256 512 1024 2048
batch size

0.0

0.6

1.2

1.8

2.4

3.0
La

te
nc

y
(m
s)

RollStore (Search)
RollStore (Proof Generation)
BlockchainDB (Get operation)
BlockchainDB (Verify operation)
BigchainDB
WedgeBlock

Fig. 10: Read latency in different batch sizes.

and BigChainDB are not included in the figure as they do
not utilize permissionless blockchain that requires fees).

Read latency: Figure 10 shows the read latency while
varying the batch sizes. The average read latency of Roll-
Store becomes larger when increasing the batch size of
reading requests. As batch size increases, the backup node
requires more time to search and generate the related
proofs. The read latency in BlockchainDB is higher than
RollStore when the batch size is larger than 512; we
attribute this to the Verify operation in BlockchainDB.
This operation spends more time to verify the read result
when the batch size becomes larger. The read latency in
BigchainDB is the longest and becomes longer when the
batch size increases; this is because—although it does not
need to perform a consensus round for reads—BigchainDB
needs to build the block to record the read request; this
process increases the read latency. The read latency in
WedgeBlock increases slightly, and the batch size does
not significantly affect the read latency. This is because it
processes these reads locally without interacting with on-
chain nodes.
4.2 Scalability performance
In this section, we present a set of experiments to test the
scalability performance of our system. In this configuration,
multiple updater nodes, multiple prover nodes, and multiple
backup nodes are located on three different machines. Each
machine contains multiple instances of a type of node. We
evaluate scalability by changing the number of server nodes
and fixing the batch size of requests at 32. We vary the
number of server nodes from 4 to 13.

Throughput: This set of experiments focused on mea-
suring the throughput, as depicted on the left side of
Figure 11. As the number of server nodes increased, the
throughput of all three stages increased. This is because
more updater and backup nodes were able to work in
parallel, resulting in higher throughput. This observation
highlights that even smaller batch sizes can achieve higher
throughput by adding more server nodes, which also leads
to reduced latency in stage 2. The throughput of stage 2
commitment (RollStore-2) increased by a factor of 11.9X
when the number of server nodes was increased from
1 to 13. This is due to the leveraging of computation
resources from multiple prover nodes to accelerate the
proof generation process (see Section 3.3). Compared to

1 4 7 10 13
f Server N de#

10−1

100

101

102

103

104

Th
r
ug

hp
ut
 (

p/
#)

1 4 7 10 13
f Server N de#

10−1

100

101

La
te
nc
y
(#
ec
 n

d)

R llSt re-0
RollStore-1
RollStore-2

BlockchainDB-1
BlockchainDB-2

BigchainDB
WedgeBlock

Fig. 11: Throughput and latency in multiple server nodes.

the baseline performance, the throughput of stage 2 in
the scalability configuration was much higher than that of
Ethereum (BlockchainDB-2). While this throughput was
not as high as that of stage 0 and stage 1, it still played a
significant role in reducing the waiting time for verifying
the results of stage 1 commitment. Specifically, the waiting
time was reduced from several days to hours, highlighting
the importance of stage 2 in the overall performance of the
system. (see Section 2.3.1). The throughput of WedgeBlock
decreases when adding server nodes up to 4 nodes, then
fluctuates slightly with the addition of more nodes.

Another observation is that the local (off-chain) through-
put, as seen in BlockchainDB-1 and BigchainDB, decreases
when adding more server nodes compared to a single
server node. We attribute this to the cost of the underlying
consensus mechanism, where a larger number of nodes
causes the overhead of coordination to increase.

Latency: As shown in the right side of Figure 11,
the reduction of latency in RollStore-0, RollStore-1, and
WedgeBlock is not significant. This is because the la-
tency is mainly determined by the updater node processing
for RollStore-0 and the blockchain confirmation time for
RollStore-1 and WedgeBlock. The latency of RollStore-
2 is significantly reduced because multiple prover nodes
work in parallel to generate the proof. It is important to
note that although the latency of RollStore-2 is significantly
reduced due to multiple prover nodes working in parallel
to generate the proof of one task, this reduction is limited.
It can only bring the latency to a slightly higher level than
the blockchain confirmation time. Nevertheless, RollStore
benefits from batching and can achieve higher throughput
and lower cost.

The addition of more server nodes does not significantly
benefit BlockchainDB and BigchainDB due to coordination
overhead in their consensus mechanism.

Transaction cost: Since the content of transactions and
smart contracts do not change when we add multiple
server nodes, the change of transaction fee (Ether cost) is
negligible and is only due to the fluctuation of gas fees.

Read throughput: Figure 12 shows the read throughput
while varying the number of server nodes. RollStore and
BlockchainDB are not impacted by the increase in the
number of server nodes. This is because the throughput
is determined by the overhead of assembling the read re-

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 15

1 4 7 10 13
of Server Nodes

0

250

500

750

1000

1250

1500

1750
Th

ro
ug

hp
ut

 (o
p/

s)
RollStore
WedgeBlock

BigchainDB BlockchainDB

Fig. 12: Read throughput in multiple server nodes.

sponses and verifying reads. BlockchainDB achieves lower
performance than RollStore due to its verification step that
takes more latency than RollStore for large batch sizes.
WedgeBlock achieves better performance than RollStore
in a single-server configuration; however, its performance
worsens when additional nodes are added. BigchainDB
achieves the lowest throughput due to the added overhead
to synchronize the response to the read operations. As the
number of nodes increases, this overhead increases and
lowers the throughput of BigChainDB.

5 DISCUSSION AND FUTURE WORK

Investigating Cross-Chain Interoperability. RollStore
currently focuses on providing a secure and effi-
cient data indexing solution for hybrid onchain-offchain
DApps within a single blockchain ecosystem, specifically
Ethereum. Future work could explore the challenges and
opportunities of enabling cross-chain interoperability. This
would involve developing mechanisms to index and manage
data across multiple blockchain networks, allowing DApps
to leverage the strengths of different blockchains while
maintaining consistency and security. Addressing cross-
chain data management could significantly expand the
applicability and flexibility of RollStore in the rapidly
evolving blockchain landscape.

Enhancing Flexibility in Security and Performance
Trade-offs. RollStore currently uses a three-stage commit
protocol that balances security and performance. However,
the implementation does not allow users to actively control
the degree of security based on their specific needs. For
example, users might want to partially guarantee security
for some higher-priority operations while accepting lower
security for less critical ones. Exploring this flexibility
could lead to broader usage of RollStore in various DApps,
enabling them to customize the balance between security
and performance according to their unique requirements.

6 CONCLUSION

We propose RollStore, a data indexing solution for hybrid
onchain-offchain DApps. RollStore builds on advances in
blockchain scaling solutions such as rollups, as well as in-
dexing and authenticated data structures. The outcome is a
three-stage commit protocol that allows balancing the trade-
off between security and performance for hybrid blockchain
methods. Our evaluations demonstrate the advantages of

RollStore in terms of cost and performance while compar-
ing with two blockchain-based databases, BlockchainDB
and BigChainDB.

7 ACKNOWLEDGMENTS
This research is partly supported by the NSF under grants
CNS1815212 and SaTC-2245372.

REFERENCES
[1] J. Adler and M. Quintyne-Collins. Building scalable decentralized

payment systems. arXiv preprint arXiv:1904.06441, 2019.
[2] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic. Trust-

worthy blockchain oracles: review, comparison, and open research
challenges. IEEE Access, 8:85675–85685, 2020.

[3] A. Alkhateeb, C. Catal, G. Kar, and A. Mishra. Hybrid blockchain
platforms for the internet of things (iot): A systematic literature
review. Sensors, 22(4):1304, 2022.

[4] L. Allen, P. Antonopoulos, A. Arasu, J. Gehrke, J. Hammer,
J. Hunter, R. Kaushik, D. Kossmann, J. Lee, R. Ramamurthy, et al.
Veritas: Shared verifiable databases and tables in the cloud. In 9th
Biennial Conference on Innovative Data Systems Research (CIDR),
2019.

[5] M. J. Amiri, D. Agrawal, and A. El Abbadi. Sharper: Sharding
permissioned blockchains over network clusters. In Proceedings of
the 2021 International Conference on Management of Data, pages
76–88, 2021.

[6] A. M. Antonopoulos and G. Wood. Mastering ethereum: building
smart contracts and dapps. O’Reilly Media, 2018.

[7] M. Belotti, N. Božić, G. Pujolle, and S. Secci. A vademecum on
blockchain technologies: When, which, and how. IEEE Communi-
cations Surveys & Tutorials, 21(4):3796–3838, 2019.

[8] P. Biel, S. Zhang, and H.-A. Jacobsen. A zero-knowledge proof
system for openlibra. In Proceedings of the 22nd International
Middleware Conference: Demos and Posters, pages 3–4, 2021.

[9] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li.
Paxos replicated state machines as the basis of a high-performance
data store. In 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 11), 2011.

[10] Z. Cao, S. Dong, S. Vemuri, and D. H. Du. Characterizing, modeling,
and benchmarking {RocksDB}{Key-Value} workloads at facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST
20), pages 209–223, 2020.

[11] Y. Chen and C. Bellavitis. Blockchain disruption and decentralized
finance: The rise of decentralized business models. Journal of
Business Venturing Insights, 13:e00151, 2020.

[12] D. Company. Dapp radar rankings. https://dappradar.com/rankings,
2022.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing, pages 143–154, 2010.

[14] H. Desai, M. Kantarcioglu, and L. Kagal. A hybrid blockchain
architecture for privacy-enabled and accountable auctions. In 2019
IEEE International Conference on Blockchain (Blockchain), pages
34–43. IEEE, 2019.

[15] J. Eberhardt and S. Tai. Zokrates-scalable privacy-preserving off-
chain computations. In 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pages
1084–1091. IEEE, 2018.

[16] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Rama-
murthy. Blockchaindb: A shared database on blockchains. Proceed-
ings of the VLDB Endowment, 12(11):1597–1609, 2019.

[17] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity.
Journal of cryptology, 1(2):77–94, 1988.

[18] D. Foundation. decentraland. https://decentraland.org/, 2020.
[19] A. Garoffolo, D. Kaidalov, and R. Oliynykov. Zendoo: A zk-

snark verifiable cross-chain transfer protocol enabling decoupled and
decentralized sidechains. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 1257–1262.
IEEE, 2020.

[20] Z. Ge, D. Loghin, B. C. Ooi, P. Ruan, and T. Wang. Hybrid
blockchain database systems: design and performance. Proceedings
of the VLDB Endowment, 15(5):1092–1104, 2022.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING 16

[21] O. Goldreich and H. Krawczyk. On the composition of zero-
knowledge proof systems. In International Colloquium on Automata,
Languages, and Programming, pages 268–282. Springer, 1990.

[22] O. Goldreich and Y. Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[23] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Ger-
vais. Sok: Off the chain transactions. IACR Cryptol. ePrint Arch.,
2019:360, 2019.

[24] H. Guo and X. Yu. A survey on blockchain technology and its
security. Blockchain: research and applications, 3(2):100067, 2022.

[25] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb:
Global scale resilient blockchain fabric. Proceedings of the VLDB
Endowment, 13(6).

[26] M. P. Herlihy and J. M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[27] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases.
In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 529–540. IEEE, 2013.

[28] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, et al. Lessons
learned from the chameleon testbed. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 219–233, 2020.

[29] R. Kumar, N. Marchang, and R. Tripathi. Distributed off-chain stor-
age of patient diagnostic reports in healthcare system using ipfs and
blockchain. In 2020 International Conference on COMmunication
Systems & NETworkS (COMSNETS), pages 1–5. IEEE, 2020.

[30] L. LAMPORT, R. SHOSTAK, and M. PEASE. The byzantine
generals problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, 1982.

[31] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey.
The VLDB Journal, 29(1):393–418, 2020.

[32] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and
A. Granzotto. Bigchaindb: a scalable blockchain database. white
paper, BigChainDB, 2016.

[33] R. C. Merkle. A digital signature based on a conventional encryption
function. In Conference on the theory and application of crypto-
graphic techniques, pages 369–378. Springer, 1987.

[34] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry.
Sprites and state channels: Payment networks that go faster than
lightning. In International Conference on Financial Cryptography
and Data Security, pages 508–526. Springer, 2019.

[35] M. Naor and M. Yung. Universal one-way hash functions and their
cryptographic applications. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 33–43, 1989.

[36] S. Nathan et al. Blockchain meets database: Design and im-
plementation of a blockchain relational database. arXiv preprint
arXiv:1903.01919, 2019.

[37] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao. An efficient query
scheme for hybrid storage blockchains based on merkle semantic trie.
In 2020 International Symposium on Reliable Distributed Systems
(SRDS), pages 51–60. IEEE, 2020.

[38] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song. Falcondb:
Blockchain-based collaborative database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data,
pages 637–652, 2020.

[39] C. Pop, T. Cioara, I. Anghel, M. Antal, and I. Salomie. Blockchain
based decentralized applications: Technology review and develop-
ment guidelines. arXiv preprint arXiv:2003.07131, 2020.

[40] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. Chaini-
fydb: How to blockchainify any data management system. arXiv
preprint arXiv:1912.04820, 2019.

[41] C. Sguanci, R. Spatafora, and A. M. Vergani. Layer 2 blockchain
scaling: A survey. arXiv preprint arXiv:2107.10881, 2021.

[42] A. Singh, Y. Zhou, S. Mehrotra, M. Sadoghi, S. Sharma, and
F. Nawab. Wedgeblock: An off-chain secure logging platform for
blockchain applications. 2023.

[43] M. Tan. Ethereum charts and statistics. https://etherscan.io/charts,
2015.

[44] P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi, and K.-K. R.
Choo. A systematic literature review of blockchain cyber security.
Digital Communications and Networks, 6(2):147–156, 2020.

[45] P. Todd. Making utxo set growth irrelevant with low-latency delayed
txo commitments (2016).

[46] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei. vchain+:
Optimizing verifiable blockchain boolean range queries. In 2022
IEEE 38th International Conference on Data Engineering (ICDE),
pages 1927–1940. IEEE, 2022.

[47] Y. Wang, Z. Tu, Y. Bai, H. Yuan, X. Xu, and Z. Wang. A blockchain-
based infrastructure for distributed internet of services. In 2021 IEEE
World Congress on Services (SERVICES), pages 108–114. IEEE,
2021.

[48] Q. Wei, B. Li, W. Chang, Z. Jia, Z. Shen, and Z. Shao. A survey
of blockchain data management systems. ACM Transactions on
Embedded Computing Systems (TECS), 21(3):1–28, 2022.

[49] H. Wu, J. Cao, Y. Yang, C. L. Tung, S. Jiang, B. Tang, Y. Liu,
X. Wang, and Y. Deng. Data management in supply chain using
blockchain: Challenges and a case study. In 2019 28th International
Conference on Computer Communication and Networks (ICCCN),
pages 1–8. IEEE, 2019.

[50] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. {DIZK}: A
distributed zero knowledge proof system. In 27th USENIX Security
Symposium (USENIX Security 18), pages 675–692, 2018.

[51] K. Wu. An empirical study of blockchain-based decentralized
applications. arXiv preprint arXiv:1902.04969, 2019.

[52] C. Xu, C. Zhang, J. Xu, and J. Pei. Slimchain: scaling blockchain
transactions through off-chain storage and parallel processing. Pro-
ceedings of the VLDB Endowment, 14(11):2314–2326, 2021.

[53] K. Yang, P. Sarkar, C. Weng, and X. Wang. Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over
any field. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2986–3001, 2021.

[54] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. Gemˆ 2-tree: A
gas-efficient structure for authenticated range queries in blockchain.
In 2019 IEEE 35th international conference on data engineering
(ICDE), pages 842–853. IEEE, 2019.

[55] Q. Zhang, Y. He, R. Lai, Z. Hou, and G. Zhao. A survey on
the efficiency, reliability, and security of data query in blockchain
systems. Reliability, and Security of Data Query in Blockchain
Systems.

[56] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou. vsql: Verifying arbitrary sql queries over dynamic outsourced
databases. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 863–880. IEEE, 2017.

[57] Q. Zhou, H. Huang, Z. Zheng, and J. Bian. Solutions to scalability
of blockchain: A survey. Ieee Access, 8:16440–16455, 2020.

[58] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li. Veridb: An sgx-
based verifiable database. In Proceedings of the 2021 International
Conference on Management of Data, pages 2182–2194, 2021.

Qi Lin is currently working towards the PhD
degree in computer science and engineer-
ing at Arizona State University. He holds a
master’s degree in computer science from
the University of California, Irvine, and his
research interests lie in the areas of zero-
knowledge proofs, blockchain, and query
compilation.

Binbin Gu is currently working towards the
PhD degree in computer science and engi-
neering at the University of California, Irvine.
His research interests include machine learn-
ing, blockchain, zero-knowledge proofs, and
Natural Language Processing (NLP). He has
published several papers in the IEEE Trans-
actions on Knowledge and Data Engineering,
ICDE, EDBT, DASFAA, etc.

Faisal Nawab is an Assistant Professor at
the University of California, Irvine (UCI). He
leads EdgeLab which tackles research prob-
lems in the intersection of data management
and distributed systems with a focus on de-
centralized and Internet of Things (IoT) appli-
cations. He has published papers in VLDB,
SIGMOD, ICDE, EDBT, IEEE IoT, and other
data management and systems conferences
and journals.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3436514

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 04,2024 at 02:58:56 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	LSM Trees
	MMR Trees
	Blockchain Rollups
	Optimistic Rollups
	Zero-knowledge Rollups

	Related Work

	RollStore Design
	System Model and Interface
	RollStore Core Design and Protocol
	Scaling Off-Chain Nodes
	DApp-Indexing-as-a-Service Model
	Failure Examples
	Safety

	Evaluation
	Baseline performance
	Scalability performance

	Discussion and Future Work
	Conclusion
	Acknowledgments
	References
	Biographies
	Qi Lin
	Binbin Gu
	Faisal Nawab

