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Abstract—Blockchain and Decentralized Applications (DApps)
are increasingly important for creating trust and transparency
in data storage and computation. However, on-chain transactions
are often costly and slow. To overcome this challenge, off-chain
nodes can be used to store and compute data. Unfortunately,
this introduces the risk of untrusted nodes. To address this,
authenticated data structures have been proposed, however, this
ignores the compute of data from the raw data. We tackle this
challenge by introducing zk-Oracle, which provides an efficient
and trusted compute and storage off-chain. zk-Oracle builds on
zero-knowledge proof (zk-proof for short) technologies to achieve
two goals. First, the computation of data structures from raw data
and the corresponding proof generation is improved in terms
of performance. Second, the verification on-chain is inexpensive
and fast. Our experiments show that we can speed up zk-proof
generation by up to more than 550× faster than the baseline
method.

Index Terms—zk-SNARK, blockchain, IoT

I. INTRODUCTION

Blockchain is a distributed database that allows multiple
parties to share and maintain a single, tamper-evident ledger of
transactions. It is the technology underlying cryptocurrencies
such as Bitcoin and Ethereum. DApps (decentralized applica-
tions) are applications that are built on top of blockchain. They
are not controlled by any single authority, but rather operate on
a decentralized network of computers. Blockchain and DApps
are important because they offer a way to conduct transactions
and exchange value without the need for a central authority.
This not only has the potential to make transactions faster and
more efficient, but also to create new types of applications
that were not previously possible. For example, DApps could
be used to create decentralized markets, enable secure voting
systems, or provide a platform for peer-to-peer lending.

One of the challenges of blockchain-based DApps is the
high cost and latency of transactions. Because all transactions
on a blockchain must be processed by every node on the
network, the more users a DApp has, the more computational
power is required to process the transactions. This can lead
to slow performance and high transaction fees. For example,
writing to a blockchain smart contract can take tens of minutes
or more to finalize [1]. And the cost of a smart contract
operation is estimated that the average cost of a single smart
contract operation is around 3 dollars [2].

To be practical for high-volume transactions, DApps now
are built using a combination of on-chain and off-chain
components to achieve the desired level of performance and
cost efficiency. The on-chain component of a DApp typically
consists of a smart contract that defines the rules and logic
of the application, while the off-chain component consists of
the user interface and other supporting services that interact
with the smart contract. In this way, the heavy tasks like
computation and data storage can be done with off-chain
nodes, reducing the monetary and performance overhead of
performing actions on-chain.

However, the security risks of utilizing off-chain nodes
that are outside of the blockchain network and are thus not
governed by the same security guarantees. For this reason, two
kinds of techniques were often used to ensure that off-chain
nodes will not act maliciously. (1) The first kind of methods
use authenticated data structures to provide trust on the out-
come of off-chain nodes’ processing [3], [4], [5], [6], but the
problem with those methods is that a trusted entity is needed to
guarantee the integrity of such data structures. (2) The second
type of methods rely on verifiable computing techniques [7],
[8], [9]. However, these methods could be quite expensive for
off-chain nodes. For example, the proving time takes about
10 years [10] in the state-of-the art zk-SNARKs [11] for the
dataset VGG16 [12] (around 568 MegaBytes) using a CNN
(Convolutional Neural Network) model.

In this work, we propose zk-Oracle, an on-chain/off-chain
solution that enables efficient and cost-effective solutions for
off-chain compute and storage. The main contribution is to
study approaches to speed up zk-based proof generation. We
propose a batching algorithm for zk-proof generation that
utilizes two design patterns: (1) horizontal batching, and (2)
vertical batching. Specifically, horizontal batching refers to
splitting the whole input dataset (or workloads) into small
ones, such that each batch of data can be performed with the
algorithm program sequentially. Vertical batching, otherwise,
breaks up the complete algorithm program into multiple small
modules such that these modules can be performed sequen-
tially with the correct logic and outcome. We optimize the size
of zk-proofs such that the proposed batching algorithm will
not produce larger size of zk-proofs compared with that the
baseline solution. In addition, the proposed batching algorithm



can be performed in parallel which further saves the zk-proof
generation time. Lastly, the proposed batching method can
be easily implemented with some state-of-the-art zk-SARNK
systems and tools, such as lisnark [13] and ZoKrates [14].

Although zk-Oracle is applicable to general DApps, the
focus in this paper is on two classes of applications: (1)
IoT/supply chain applications where the data sources might
be small IoT devices that are not capable of compute/storage.
(2) Gaming and social DApps, where users might be using
small or mobile devices that are not available all the time, and
may be limited in terms of compute for energy preservation.

The contributions of this paper are as follows:
• We propose zk-Oracle, an on-chain/off-chain solution that

enables efficient and cost- effective solutions for off-chain
compute and storage.

• We propose a batching algorithm that utilizes two design
patterns—horizontal and vertical batching— to speed up
the zk-proof generation. The proposed batching method
can be easily implemented with some state-of-the-art zk-
SARNK systems and tools.

• We conduct a comprehensive evaluation to study the
effectiveness of our solution. Our experiments show that
we can speed up zk-proof generation by up to more than
550× faster than the baseline method.

The rest of the paper is organized as follows: We first
present the preliminaries in Section 2. Then, we introduce
the zk-Oracle design in Section 3 followed by the detailed
techniques of accelerating zk-proof generation in Section 4.
In Section 5, we show our experiments. In Section 6, we
describe the related work and conclude with a discussion of
future directions and challenges in Section 7.

II. PRELIMINARIES

A. Blockchain and DApps

One challenge for DApps is the high cost of transactions
on many blockchain platforms. This can make it expensive
for users to interact with DApps especially when the DApps
require heavy computation and large storage. Instead of storing
and computing data on blockchain, zk-Oracle offloads the
heavy computation processing and stores large amount of data
to off-chain nodes. While zk-Oracle guarnatees the integrity of
the computation and data, it significantly reduce the on-chain
transaction fees.

B. zk-SNARK

zk-SNARK stands for “Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge”, and it refers to a proof
construction where one can prove possession of certain in-
formation, without revealing that information. For instance, a
zk-SNARK can be used to prove and verify this statement
“Given a public predicate F and a public input x, I know a
secret input w such that F (x,w) = true”. Given a statement s,
the zk-SNARK is used in the following way by utilizing three
components: the setup component, the prover component, and
the verifier component for DApps (Figure 1):
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Fig. 1: The workflow of zk-SNARK for DApps.

• In the setup component, a setup node generates a proving
key Pks and a verification key V ks that will be used to
generate and verify proofs. Although these two keys can
be published, the computation work to generate these two
keys should remain a secret. Therefore, for zk-SNARK, the
setup—which is a one-time process before operation—must
be performed by a trusted node or multiparty computation
(MPC) [15]. After setup, there is no need for trusted nodes.
The generation of the two keys is influenced by the type of
computation that needs to be proven. The user provides the
program to be proven/verified as well as the inputs to such
computation. The user assigns which parts of the inputs are
public and which parts are secret. In zk-Oracle, for example,
the program to prove/verify is the one that updates the key-
value pairs and produces a new state about the key-value
pairs; and the inputs to the program are the previous state
and its digest as well as the operations that are applied to
the previous state to generate the new state.

• The prover node in the prover component is responsible for
generating the correctness proof of the computation. It needs
three parameters, the proving key Pks, the public informa-
tion, Infpub, and the secret information, Infsecret which is
optional. After collecting these parameters, the prover node
generates a proof πs of the computation outcome.

• In the verifier component, the verifier uses three parameters:
the verification key V ks, the public information Infpub, and
the proof πs to verify the proof πs. After collecting these
parameters, the verifier node generates a decision (True or
False). In hybrid blockchains, the verifier can be a smart
contract. Typical zk-SNARK protocols are designed so that
verification is fast at the expense of a more lengthy proof
generation process. This is suitable for hybrid blockchains,
since generating proofs is performed by off-chain nodes
that do not have the constraints of smart contracts, while
verification is performed on-chain.



C. Use Cases

To use zk-SNARK to do computation on raw data, the
raw data would first need to be sent to an off-chain node.
This node would then perform the necessary calculations to
get the zk-proofs for such calculations, using the zk-SNARK
proof construction. The zk-proofs could then be sent back
to the original sender or to another party for verification.
The exact process for transforming the data would depend
on the specific application and the requirements of the parties
involved. In general, however, the process would involve the
prover generating a zk-SNARK proof that they have the
knowledge required to transform the data, and the verifier
using the proof to verify that the transformation was performed
correctly without revealing any information about the original
data. This process could be repeated multiple times to ensure
that the data has been transformed correctly and accurately.

In the IoT space, zk-SNARKs could be used to verify the
authenticity and integrity of sensor data without revealing the
actual data being collected. This could be especially useful
in applications where sensitive information is being collected,
such as in healthcare or financial services. In the supply chain
space, zk-SNARKs could be used to verify the provenance
of goods, ensuring that they have not been tampered with or
counterfeited. This could be especially useful in industries
where counterfeiting is a major concern, such as in the
pharmaceutical or luxury goods industries.

In the gaming industry, zk-SNARKs could be used to verify
the fairness of online games, ensuring that the game results are
truly random and not influenced by any outside factors. This
could help to build trust and confidence among players and
increase the overall enjoyment of the gaming experience. In
the social network space, zk-SNARKs could be used to verify
the authenticity of user accounts, ensuring that the person
behind the account is who they claim to be. This could help
to reduce the prevalence of fake accounts and increase trust
among users. It could also be used to verify the authenticity
of content posted on the network, helping to reduce the spread
of misinformation and fake news.

III. ZK-ORACLE DESIGN

In this section, we describe the design of zk-Oracle

A. System Model

zk-Oracle consists of the following components (Figure 2):
• Sources: The sources collect the raw data from their acces-

sible resources. Examples are IoT devices which use sensors
to collect data from their environment.

• Off-chain Provers: The off-chain provers compute the data
from the raw data and perform zk-SNARK computation to
generate proofs of their computation.

• Consumers: The consumers send read and write requests
to smart contracts and get the response from smart contract.

• Smart contracts: On-chain smart contracts handle the
verification and maintenance of digests related to the com-
putation results and zk-proof data. Also, the smart contract
handles the punishment strategy by verifying whether the
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Fig. 2: The framework of zk-Oracle.

zk-proof is valid. If the zk-proof can not be proved to be
valid, then the smart contract punishes the off-chain prover
by withdrawing funds from its escrow account.

Security model. Off-chain prover are not trusted. They can
deviate from the protocol in arbitrary ways, similar to byzan-
tine failures [16]. Off-chain provers can collude together and
with consumers. The smart contract logic executes correctly—
without deviating from the protocol—due to running on
blockchain. Write requests are assumed to be authenticated by
consumers, which prevents off-chain provers from fabricating
clients requests.

Network model. Similar to prior systems, we assume a
synchronous model for liveness. That is, during each time step,
all components of the system are expected to execute their
assigned tasks and update their internal states.

System assumptions. We assume that the sources (see
Figure 2) have low compute/ storage capabilities that they
can not computing the data from the raw data. The off-chain
provers have high compute/storage capabilities but are not
trusted instead.

B. Overview

We now provide a description of zk-Oracle’s core design.
We will describe the end-to-end life-cycle of the zk-Oracle
workflow.
Step ①: A source s creates or collects the raw data D from
its environment.
Step ②: The source s sends the raw data D to an off-chain
prover (node) p.
Step ③: A consumer sends a request r to an off-chain prover
(node) p.



Step ④: After the prover p receives the raw data D and the
request r, it performs two steps to complete the computation
task.

• Step ④(a): The prover p first does the computation on D
according to the requirement of the request r. After the
computation finishes, the prover p gets the final output
of the computation (possibly with many intermediate
outputs).

• Step ④(b): Next, the prover p performs zk-SNARK
computation to get the corresponding zk-proof π for the
computation. Although generating the corresponding zk-
proof π also provides the prover p with the final output
of the computation, we will show why Step ④(a) is
necessary for zk-Oracle in Section IV.

Step ⑤: The prover p sends the corresponding zk-proof to the
smart contract sc on blockchain. The sc verifies whether the
zk-proof π is valid. If the π is not valid, the prover will be
punished.
Step ⑥: The consumer reads the output and the transformed
data after the smart contract successfully verifies the π.
We store the transformed data with tailored structures. For
example, we build the key-values pairs with a Merkle tree
structure. When a consumer wants to read a specific value, he
will receive the some hash values of the Merkle tree nodes
instead of the whole Merkle tree structure. In this way, the
consumer can verify the integrity of the value he reads without
receiving a large data structure.

IV. ACCELERATING ZK-PROOF GENERATION

While the zk-proof generation takes enormous time with the
zk-SNARK baseline method, we propose a solution to speed
up the zk-proof generation process. Our method works for any
zk-SNARK-based method since it does not rely on specific zk-
SNARK constructions.

A. Motivation

We observe that the zk-proof generation time significantly
increases when the complexity of the computation task grows.
For example, the zk-proof generation time for training a
logistic regression model is 1 second with 100 training data
samples; however, the zk-proof generation time becomes more
than 6000 seconds when training with 10000 data samples. We
notice that the total time for zk-proof generation is only 100
seconds when we train a logistic regression model with 100
training data samples 100 times.

From the theoretical analysis, the state-of-the-art zk-
SNARKs transform the computation of a circuit into an
equivalent representation called a Quadratic Arithmetic Pro-
gram [17]: a circuit with N wires and M gates is transformed
into a satisfaction problem about O(N) polynomials of degree
O(M). The complexity of evaluating these polynomials yields
O(MN). While the more complex computation tasks have
both larger M and N , they often need much more time for
generating zk-proofs.

The above experimental results and theoretical analysis
motivate us to split large computation tasks into small ones
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such that the zk-proof generation time for each subtask become
lightweight. In the following, we first talk about two batching
techniques that divides the large computation task into small
ones. After that, we introduce the methods for optimizing the
size of zk-proofs.

B. Horizontal batching for zk-proof generation

Horizontal batching for zk-proof generation aims to split
the whole input dataset (or workloads) into small ones, such
that each batch of data can be performed with the algorithm
program sequentially. Figure 3 shows the illustration of the
horizontal batching. Essentially, the algorithm program should
be able to process a batch of data independently without
affecting the outcome of the computation task. For example,
the task involving the write operations on a database can use
the horizontal batching method as the write operations are
processed one by one. Nonetheless, the horizontal zk-proof
scaling does not apply for the tasks which need to load the
whole input dataset into memory for computation. Examples
are those ML algorithms which do not compute the batch
graidents for training.

C. Vertical batching for zk-proof generation

Vertical batching for zk-proof generation breaks up the
complete algorithm program into multiple small modules such



that these modules can be performed with the correct logic and
outcome. Figure 4 illustrates the vertical batching workflow.
In principle, any algorithm program can be split into multiple
small modules, which we call batches here, as long as the
algorithm program has more than one computation operation.
To make the outcome of each batch more interpretable to the
other users, a good way is to make each batch have the same
functionality. For example, in ML training tasks, a good batch
can be the the algorithm program that trains the ML model for
one epoch. An complete ML algorithm involving 20 epochs
for training a ML model would lead to 20 batches.

While a batch means a partial dataset in horizontal batching,
it represents a partial algorithm program in vertical batching.
We now make a formal definition of a batch used in the rest
of the paper.

Definition 4.1 (Batch): Given a set of datasets D =
{D1, D2, ..., Dm} and a set of algorithm programs A =
{A1, A2, ..., An}, where Di is a dataset and Ai is an algorithm
program, a batch B(Di, Aj) is a program where the algorithm
program Aj performs with the dataset Di.

With the above definition, the task with the baseline method
can be represented as B(D,A), where D and A are the whole
dataset and the complete algorithm program respectively. And
the maximal number of batches is m×n, given a set of dataset
D = {D1, D2, ..., Dm} (assuming that D can be split for
independent processing) and a set of algorithm programs A =
{A1, A2, ..., An}.

D. Optimizing proof size

The solution to generating zk-proofs with horizontal and
vertical batching can significantly reduce the zk-proof gen-
eration time. However, producing a zk-proof for each batch
results in the large zk-proof size finally. To solve this problem,
we propose a way to reduce the redundant content in the zk-
proofs. Before introducing our solution, we first review the
components of a zk-proof. A zk-proof for a batch B(D,A),
denoted as πB(D,A), is made up of the public input dataset A,
the output of the computation and the cryptographic commit-
ment. The size of πB(D,A) then equals to the sum of the size
of the input, output and cryptographic commitment.

The following pseudocode shows how a zk-proof is gener-
ated with the help of a main function M(·).

def M(public D, private w) ->
desired data type{

output = A(D, w)
return output

}

At a high level, the main function M(·) proceeds three steps
to generate a zk-proof. First, M(·) takes the public input
D and private input w as inputs. Second, it performs the
computation program A(D,w) to get the output. Third, it
returns the desired computation result obtained from A(D,w).
After running M(D,w) with a zk-SNARK tool, a zk-proof
πB(D,A) is generated.

In the following, we introduce our strategies for dealing with
three types of batches: the head batch, middle batch and tail
batch. The following pseudocode Mhead(·) shows the main
function to generate a zk-proof for the head (first) batch:

def M_head(public D_1, private w) -> bool{
output = A(D_1, w)
res = R_1
return (output == res)

}

where R1 is the output obtained by pre-computing A(D1, w)
(see the step ④(a) in Figure 2) without generating zk-proofs.
R1, like the function A(·), should be public to the other users
to guarantee the validity of the zk-proof for πB(D1,w). Mhead

only returns a bool type instead of the real output of A(D1, w)
because this makes the πB(D1,w) much smaller (recall the
components of a zk-proof at the beginning of this section)
when the size of the output of A(D1, w) is large.

Assuming that there are k batches, to generate the zk-proofs
for the 2-nd to (k − 1)-th batches, i.e. middle batches, we
illustrate with the following main function Mmiddle(·).

def M_middle(private w) -> bool{
// i denotes the i-th batch
input = R_{i-1}
output = A(input, w)
res = R_i
return (output == res)

}

Mmiddle(·) takes no public inputs. Instead, it initializes an
input inside Mmiddle(·) as Ri−1 which is the output of the
(i − 1)-th batch. Similar to the strategy in Mhead, Mmiddle

returns a bool type instead of the real output of A(input, w)
to reduce the size of its zk-proof. Also, Ri−1 and Ri, like the
function A(·), should be public to the other users to verify the
validity of the generated zk-proofs.

To generate the zk-proof for the tail (last) batch, we explain
with the following main function Mtail(·).

def M_tail(private w) -> desired data type{
input = R_{k-1}
output = A(input, w)
return output

}

Mtail(·) takes no public inputs. Instead, it initializes an input
inside Mtail(·) as Rn−1 which is the output of the (k − 1)-
th batch. Different with Mhead(·) and Mmiddle(·), Mtail(·)
returns the desired output instead of a boolean value because
the output should be included in a zk-proof such that the other
users can see the final output of the computation task.

Algorithm 1 shows the full algorithm of how the zk-proofs
are generated with the proposed batching method. To enable
anyone else to verify the validity of these zk-proofs, the algo-
rithm programs A, the set of datasets D = {D1, D2, ..., Dm},
the set of algorithm programs A = {A1, A2, ..., An}, and
the set of generated outputs R = {R1, R2, ..., Rmn−1} on



B(Di, Aj) (i ∈ [1,m], j ∈ [1, n]) are public. The full
algorithm generates a zk-proof for each batch (lines 1 − 15).
For the first and last batch, it adopts Mhead(·) and Mtail(·), as
described before, to generate zk-proofs (lines 3− 5 and lines
7−9). For the middle batches, we use Mmiddle(·) to generate
the zk-proofs (lines 10 − 12). The batching algorithm finally
returns mn zk-proofs i.e πB(D1,A1) to πB(Dm,An) (line 16).

Algorithm 1: Batching method for zk-proof generation
Public information:
The algorithm program A;
The set of datasets D = {D1, D2, ..., Dm};
The set of algorithm programs A = {A1, A2, ..., An};
The set of generated outputs R = {R1, R2, ..., Rmn−1}
on B(Di, Aj) (i ∈ [1,m], j ∈ [1, n]).
Input : The private input x and public

input D;
Output : zk-proofs for mn batches

1 for i← 1 to m do
2 for j ← 1 to n do
3 if i == 1 then
4 πB(D1,A1) = Mhead(Di, w);
5 end
6 else
7 if i == m and j == n then
8 πB(Dm,An) = Mtail(w);;
9 end

10 else
11 πB(Di,Aj) = Mmiddle(w);
12 end
13 end
14 end
15 end
16 return πB(D1,A1) to πB(Dm,An) ;

Algorithm Properties. The batching algorithm for zk-
proof generation owns two properties: (1) The algorithm can
be performed in parallel. All the three functions Mhead(·),
Mmiddle(·) and Mtail(·) take some known inputs such as D
and R, meaning that none of them will interact with each other.
Therefore, all the three functions can be performed indepen-
dently. (2) The size of zk-proofs is O(|D| + |Out| + k|C|)
where Out and C are the final output and the cryptographic
commitment for each zk-proof respectively, k is the number
of batches and | · | is a size calculation function. Because the
size of each commitment of a zk-proof is constant (with the
state-of-the-art and commonly used Groth schema [11]), we
conclude that the sizes of the zk-proofs for the head, middle
and tail batches are O(|D|+ |C|), O(|C|) and O(|Out|+ |C|)
respectively. Consequently, the total size of these zk-proofs is
O(|D| + |Out| + k|C|). The size of C is often quite small.
When the sizes of D and Out are large, the zk-proof size of
our batching algorithm become close to that of the baseline
O(|D|+ |Out|+ |C|).

Generating a single zk-proof of zk-proofs. To further

optimize the size of these k zk-proofs, we can generate a zk-
proof for proving that the k zk-proofs are valid. The following
pseudocode shows how to do it.

def zk-G(public D, private w) ->
desired data type{

zk_proof = [zk-proofs for k batches]
for 1 to k:

Verify(zk_proof, w)
return output

}

In this way, verifying the k zk-proofs can be done with off-
chain machines, and only a single zk-proof will be verified on
blockchain.

V. EXPERIMENT

In this section, we perform an experimental evaluation of
the performance of zk-Oracle.

A. Setup

Experimental setup. Our experiments are performed on the
Ethereum Goerli test network, which now has switched to
proof-of-stake (PoS). We implement the on-chain components
using solidity smart contracts, and implement off-chain com-
ponents using Javascript and Python. Software and libraries
that we use for specific approaches are mentioned later in
the section. The experimental environment is a computer with
a Quad-Core Intel Core i5 processor, 8GB memory, running
macOS Catalina. We use ZoKrates [14], which supports au-
tomatically generating the verifier smart contract in solidity,
to implement a zkSNARKs-based approach. The implemen-
tation of ZoKrates is based on libsnark 1, a cryptographic
library which implements zk-SNARK schemes. And we use
Groth16 [11] scheme to derive proofs with a small size with
ZoKrates.
Datasets: We use the Yahoo! Cloud Serving Benchmark
(YCSB) [18] to generate the workload for database updating
experiments. The second dataset, 3D Road Network (Road for
short) [19], includes 3D road network with highly accurate
elevation information. It contains 430K data samples. We use
this dataset for the Logistic Regression training and Neural
Network inference tasks.
Tasks: We show the effectiveness of our solution on three
common tasks.

• Key-value updating. In this task, we update the key-value
pairs and use the Merkle tree structure to construct the
pairs. Instead of sending the whole Merkle tree struture
to blockchain, we only send some necessary hash values
of the Merkle tree to the blockchain to guarantee the
integrity of the data structure.

• Logistic Regression model training. We train a Logistic
Regression model and send the model to the blockchain.

• Neural Netowrk inference. We use a Neurual Network
model to do inference tasks and send the predictions to
the blockchain.

1https://github.com/scipr-lab/libsnark



We call the method proposed to speed up zk-proof genera-
tion as the Batching method and the method for generating a
zk-proof for a monolithic task as the Baseline method in the
experiment.
Default parameters. Unless we mention otherwise, the num-
ber of features is set to 10 for the logistic regression model
training. The neural network used for Machine Learning (ML
for short) inference task has three layers.
Cost. In Ethereum, on-chain execution and verification cost is
calculated in a unit called gas. For ease of exposition in the rest
of this section, we also present the cost in dollars. Because the
gas-dollar conversion rate fluctuates, we make the following
assumption about the price of gas. We assume the base gas
price as 20 Gwei2 according to recent approximate pricing on
Ethereum Mainnet at the time of writing this paper. We also
assume that the price of one ether is equal 1500 dollars.

B. zk-Proof generation time evaluation

The executing time for generating zk-proofs mainly includes
the time of compiling a circuit, key generation and witness
computation (i.e. the normal computing for the task with-
out zk-proof generation). While the time for key generation
and witness is less than one second, the executing time is
dominated by compiling a circuit. Because state-of-the-art
zkSNARK systems [13] can only support statements of up
to 10-20 million gates, we can not generate the zk-proof for
the whole YCSB and Road datasets. Therefore, in each round
of zk-proof generation, we select 100K, 10K and 10K as
the maximal amount of workload for the key-value updating,
Logistic Regression model training and Neural Network infer-
ence tasks. And we calculate the their average executing time
on the above specified number of data samples or operations
for evaluation.

Figure 5(a), (b) and (c) illustrate the executing time for the
three tasks. For all the three tasks, each batch contains 500 data
samples or operations. Compared with the Baseline method,
the batching method does not appear much superiority in terms
of executing time for all the three tasks when the amount
of workload is small (i.e. with a small number of batches).
However, the batching method saves a immense amount of
time when the workloads of the task increase. Specifically,
the batching method saves more than 4 hours, 2 hours and 2
hours for the key-value updating, Logistic Regression model
training and Neural Network inference tasks. This also implies
that the batching method can save more and more time when
the workload increases, which makes a lot of sense for real
DApps.

We also evaluate the zk-proof generation time by varying
the number of batches for a fixed amount of workloads (and
datasets). The less the number of batches is, the larger the size
of each batch. Table I shows that using the smaller size of a
batch usually saves more time than that of a batch with larger
size. Nevertheless, the best choice of the number of batches is

2Gwei is a denomination of Ethereum’s ether (ETH). A gwei is one-billionth
of one ETH.

not always the larger number of batches. 30 is the best one for
the key-value updating task. 35 and 45 are the best choices for
the Neural Network inference task. The reason is that the zk-
proof generation involves some (constant) “preparing” time for
each batch. In addition, we observe from Table I that the zk-
proof generation time fluctuates in only a small range when
the number of batches is larger than a threshold. However,
the larger number of batches will produce more extra time
for verifying more zk-proofs. Therefore, choosing the largest
number of batches is not the best choice.

C. On-chain cost evaluation

The generated zk-proofs need to be send to the smart
contract for verification. Figure 6 illustrates the on-chain cost
with different numbers of batches for the Logistic Regression
model training task. The basic on-chain cost for verifying a
zk-proof is around 7 dollars and the extra cost for verifying
the 5 to 20 zk-proofs generated by the batching method is
around 1 to 4 dollars. The main on-chain cost is for storing
the parameters of the Logistic Regression model rather than
the verification computing. Therefore, the extra on-chain cost
with more numbers of batches is not linear with the number
of batches.

We show the on-chain cost with different numbers of
batches for the key-value updating and Neural Network in-
ference tasks in Table II. The on-chain cost of the Baseline
method for Neural Network inference is high because it is
expensive to store 100 (note that it is not 10K) predictions
on blockchain. One possible way to reduce this cost is to
choose a more efficient structure to store these predictions. The
computing cost for verifying the zk-proofs is small relatively
for both the key-value updating and Neural Network inference
tasks.

D. Scalability Evaluation

We evaluate the scalability of the Batching method with
multiple off-chain provers (nodes). As can be seen from
Table III, the zk-proof generation time is reduced when the
number of off-chain proves increases. And the zk-proof gen-
eration time can be scaled quasilinearly by adding more off-
chain provers, indicating the good scalability of our proposed
batching method.

VI. RELATED WORK

We discuss the existing systems for scaling DApps and the
efficent zk-SNARK-based systems.

Existing systems for scaling DApps. Layer-2 solutions are
methods for increasing the capacity of a blockchain beyond
its current limits. Layer-2 solutions [20] are built on top of
the main (or layer-1) blockchain. Typical layer-2 solutions
consist of Plasma [21] sidechain [22] state channels [23]
Rollups [24] and TrueBit [25]. While each of these is solving
a different problem, these layer-2 solutions combine both
off-chain state and off-chain computations in arbitrary ways.
While zk-Oracle builds on advances in zk-SNARK proof
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Fig. 5: zk-Proof generation time

TABLE I: zk-Proof generation time (in seconds) with different numbers of batches.

Tasks
(# of data samples

or operations)
Methods 5 10 15 20 25 30 35 40 45 50

Key-value updating
(100K)

Baseline 15893 15893 15893 15893 15893 15893 15893 15893 15893 15893

Batching 3210 1310 930 580 75 67 69 73 75 75
Logistic Regression

Training
(10K)

Baseline 6792 6792 6792 6792 6792 6792 6792 6792 6792 6792

Batching 924 410 317 280 197 151 116 99 68 46
Neural Network

Inference
(10K)

Baseline 8937 8937 8937 8937 8937 8937 8937 8937 8937 8937

Batching 2660 1160 333 124 30 18 16 17 16 17
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Fig. 6: On-chain cost for Logistic Regression model training.

TABLE II: On-chain cost (in dollars) with different numbers
of batches for the key-value updating and Neural Network
inference tasks

Tasks
(# of data samples

or operations)
Methods 5 10 15 20

Key-value updating
(100K)

Baseline 3.015 3.015 3.015 3.015

Batching 4.020 5.025 6.030 7.035
Neural Network

Inference
(100)

Baseline 30.725 30.725 30.725 30.725

Batching 31.730 32.735 33.740 34.745

systems [26], we propose an efficient solution to speeding up
zk-proof generation process.

Efficient zk-SNARK-based systems. There are mainly two
kinds of methods for improving the efficiency of the zk-
SNARK-based systems. The first one focuses on customizing
zk-SNARK constructions for specific tasks and/or structures.
Examples include the methods for decision trees [27], Neural

TABLE III: zk-Proof generation time (in seconds) with differ-
ent number of off-chain provers (nodes). We set the number
of batches as 30 for this evaluation.

# of off-chain
provers (nodes) 1 3 5 7 9

Key-value updating
(100K) 67 24 15 11 9

Logistic Regression training
(10K) 151 53 32 23 18

Neural Network Inference
(10K) 18 8 5 4 3

Network inference [28], [29], and boolean circuits [30] tasks.
The second one aims to make zk-SNARK constructions dis-
tributed and/or incremental. They concentrate on singling out
basic computational tasks for achieving efficient distributed
realizations [31], [32], [33] or using proof bootstrapping to
recursively composing proofs: proving statements about [34],
[35], [36] acceptance of the correctness of the latest step
of the program. However, these systems are not easy to be
implemented for general computations tasks due to their high
complexity or they still suffer from enormous computational
cost.

Although some work [36], [37] also proposes to break up
the generic computation into sub-computations while proving
each correct, they focus more on finding a pair of elliptic
curves that provide larger bits of security. Also, it is not clear
how these methods can be easily implemented for general
computations tasks in DApps. Our work, however, builds an
effective, economic and trusted system zk-Oracle that can
be easily implemented with existing zk-SARNK systems and
tools, such as lisnark [13] and ZoKrates [14], for general



computation tasks in DApps.

VII. CONCLUSION

In this paper, we builds zk-Oracle, an efficient and trusted
compute and storage off-chain for DApps. zk-Oracle is built
on zk-SNARK systems and is compatible with existing state-
of-the-art zk-SARNK systems. To speed up the zk-proof
generation process, we propose two batching patterns, namely
horizontal and vertical batching, for efficient zk-proof gen-
eration scaling. Our solution optimizes the size of zk-proofs
so that the on-chain cost for verifying the zk-proofs can be
minimized. Our experiments show that we can speed up zk-
proof generation by up to more than 550× faster than the
baseline method.
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